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ABSTRACT

This thesis presents a semi-supervised hierarchical Bayesian network to classify

strains of Mycobacterium Tuberculosis complex (MTBC) into a three-tier set of

genetic lineages and sublineages. MTBC is the causative agent of the infectious dis-

ease Tuberculosis (TB), which resulted in over 1.4 million deaths in 2011. Two main

types of DNA fingerprinting techniques—spacer oligonucleotide typing (spoligotyp-

ing) and mycobacterial interspersed repetitive units (MIRUs)—are regularly used

by public health officials and TB researchers to track and control TB.

The model and algorithms presented in this thesis use spoligotype and MIRU

data combined from multiple heterogeneous data sources labeled by different ex-

perts to provide a model that is able to classify MTBC isolates into a hierar-

chical phylogenetic structure. The model is trained on over 117064 isolate DNA

fingerprints collected by the United States Centers for Disease Control and Pre-

vention, the SITVITWEB database at Institut Pasteur de Guadeloupe, and the

MIRU-VNTRplus collection of MTBC strains. The model achieves high classifi-

cation accuracy, confirming many well-established lineages at all hierarchy levels,

and provides visualizations of spoligotype and MIRU signatures for each lineage. In

addition, the model discovers some inconsistencies in MTBC labels between data

sources, and suggests possible resolutions of these inconsistencies. After further

study and refinement, this approach will form the basis for a new tool for MTBC

lineage identification freely available online.
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CHAPTER 1

Introduction

This chapter provides an overview of the research presented in this thesis and pro-

vides some background on tuberculosis epidemiology and existing efforts to model

the strains of bacteria that cause tuberculosis.

1.1 Overview

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuber-

culosis complex (MTBC) bacteria. TB infects one-third of the world population

resulting in over 1.4 million deaths per year. DNA fingerprinting of MTBC has be-

come a routine part of TB control and surveillance. For example, the United States

Centers for Disease Control and Prevention (CDC) calls for DNA fingerprinting of

MTBC isolates from all culture-positive TB patients in the United States (US).

Public health officials use these DNA fingerprints to help establish or eliminate po-

tential TB transmission between individuals, to help identify TB outbreaks, and

to track the evolution of TB on a population level. Thus, large databases of DNA

fingerprints have been amassed that reflect the state of TB worldwide. This thesis

works with a combination of databases gathered from the United States Centers for

Disease Control and Prevention, the SITVITWEB project at Institute Pasteur de

Guadeloupe (IP), and the MIRU-VNTRplus project [1, 2, 3, 4].

This study focuses on two main types of DNA fingerprinting globally used for

MTBC genotyping and MTBC epidemiology: spacer oligonucleotide typing (“spolig-

otyping”) [5] and mycobacterial interspersed repetitive units – variable-number-

tandem-repeat (MIRU-VNTR, or simply MIRU) [6].

In molecular epidemiology, MTBC isolates are typically analyzed by phyloge-

netic lineages or clades. The lineages can be definitively determined by long sequence

polymorphisms (LSPs) or regions of deletion (RDs), but these LSPs and RDs are not

used for DNA fingerprinting since they do not have enough variance in a population

[7, 8]. Thus, the primary goal of this work is to predict lineages using only spolig-

1
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otypes and/or MIRU that are available. The lineages have a known hierarchical or

multi-tier structure. The top-level or major lineages have been defined by LSPs and

RDs and have been well established. Experts have used spoligotypes to determine

sublineages and some of these sublineages have been validated by LSPs and RDS [9].

The definitions, granularity, and naming of sublineages can vary by organization:

CDC uses a more coarse sublineage definition which we call mid-level lineages while

IP uses a finer sublineage definition which we call sub-level classification.

The goal of this thesis is to create a model to predict all three levels of the

lineage hierarchy. The lineage hierarchy is provided in Tables 1.1 and 1.2. Since the

three data sets do not provide all three tiers of labels for each example, this work

uses a semi-supervised method to handle the partially-labeled data. The model

must handle isolates with spoligotype and MIRU as well as spoligotypes only, since

much more data exists for the older spoligotypes. A further challenge occurs from

the fact that the lineage labels maybe wrong since they typically are determined by

experts using spoligotypes only [10]. The hope is that a semi-supervised spoligo-

type and MIRU model will correct lineage labels caused by convergent evolution of

spoligotypes or expert error or disagreement.

This thesis builds upon previous unsupervised methods [11] for sub-lineage

prediction using spoligotype only and supervised top-level lineage prediction using

spoligotype and MIRU [12, 13].

1.2 MTBC Genotyping

We review the two DNA fingerprinting methods.

Spoligotyping is based on the changes in the direct repeat locus of the MTBC

chromosome; the “spoligotype” of an MTBC isolate indicates the status of 43 pos-

sible polymorphisms in this locus. In the data recorded for an MTBC isolate, these

polymorphisms are indicated as a simple Boolean flag indicating whether or not a

particular oligonucleotide spacer exists in the DNA fingerprint of this isolate.

MIRU genotyping is also based on certain DNA properties of the MTBC

chromosome. In the case of the MIRU measurements, the count of variable num-

ber tandem repeats (VNTRs) is tallied at various loci in the chromosome. In
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this thesis, we consider a set of 12 MIRU loci commonly used for MTBC DNA

fingerprinting [6]. These 12 MIRU loci used here are labeled in the literature

as: MIRU2, MIRU4, MIRU10, MIRU16, MIRU20, MIRU23, MIRU24, MIRU26,

MIRU27, MIRU31, MIRU39 and MIRU40. Each of these MIRU loci is represented

in data sets as a (usually) numeric value that indicates the number of VNTRs at

that MIRU locus.

1.3 Discussion of Data Set

The data set used in this thesis consists of 15851 separate DNA fingerprints

of MTBC found in culture-positive TB patients, each having a unique spoligotype-

only or spoligotype-MIRU combination. As each of these data examples can occur

in several different TB patients and thus have a cardinality greater than one, this

full data set consists of 117064 isolates of MTBC.

Section 1.3.1 discusses the sources that were combined to create this data set

as well as the the classification lineages used in these data sets. Each of the lineages

are describing using up to three labels: a top level label (referred to in the data

set as Ctop), and mid-level label (Cmid), and a sub-level label (Csub). The purpose

of this three-level approach is to to organize the labels of strains of MTBC into

a format which more closely matches existing phylogenetic trees used by various

MTBC experts.

1.3.1 Data Set Sources and Lineages

The data set analyzed in this thesis comes from three sources. The Centers for

Disease Control and Prevention (CDC) provide spoligotype and MIRU information

for TB patients in the US. The Institut Pasteur de la Guadeloupe provides an

extract from their SITVITWEB online data set [2], courtesy of Nalin Rastogi and

David Couvin. The final data source is extracted from the MIRU-VNTRplus online

database [3, 4].

Each data set source provides different labels. In order to combine these data

sets into a single set of data with a three-tier lineage classification structure, the

labels provided by the the different data sources were combined / inferred as neces-
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sary. The details of combining these data set labels are described in the following

few paragraphs and result in the labels displayed in Tables 1.1 and 1.2. Table 1.1

displays those lineages that are typically referred to as the “modern” lineages, and

Table 1.2 displays those lineages typically referred to as the “ancestral” lineages

[14].

The labels provided with the CDC data set classified each isolate with a family

and a subfamily. The family label was used to provide most of the Ctop data labels

in Tables 1.1 and 1.2, and the subfamily label was used for the Cmid data labels.

Since the CDC labels only provide a fairly coarse classification of the isolates, the

Csub label for this data set was usually left as unlabeled.

The labels used in the Institut Pasteur SITVITWEB data set provide a fine-

grained classification of each data point, with between 60 and 70 total classification

labels. These classification labels provide the basis for the Csub data labels rep-

resenting the sub-level labels in the data set. For the Cmid and Ctop were then

inferred from these Csub data labels.

The labels used in the MIRU-VNTRplus data set provide a single lineage

classification labels, which are generally equivalent to the Csub and Cmid labels found

in the CDC and SITVITWEB data sets. In some cases, the MIRU-VNTRplus data

set provided additional Ctop labels, particularly for some of the smaller lineages of

MTBC such as M. microti and M. pinnipedii.

These labels include recent findings which specify the separation of a subset

of the Euro-American lineage into a distinct mid-level lineage that contains several

related strains from Africa: LAM10-CAM (Cameroon), S, and T2-uganda [9, 15].

Other recent publications describe some changes to the Haarlem mid-level lineage,

which introduces the sub-level lineages Ural-1 and Ural-2 [16]. These label changes

are included in Tables 1.1 and 1.2, and have been applied to the data from all three

sources (where applicable).

1.3.2 Missing Data and Labels

The combined data set possesses certain characteristics which must be taken

into consideration during model and training algorithm development. Specifically,



5

Table 1.1: Modern three-level MTBC strain lineages.

Ctop Cmid Csub

East-African Indian East-African Indian
CAS1-Delhi
CAS1-Kili

CAS2
East Asian (Beijing) East Asian (Beijing) Beijing

Euro-American

EuroAm-African
LAM10-CAM

S
T2-uganda

Haarlem

H1
H2
H3

Ural-1
Ural-2

LAM

LAM1
LAM11-ZWE

LAM12-Madrid1
LAM2
LAM3
LAM4
LAM5
LAM6

LAM7-TUR
LAM8
LAM9

T

H37Rv
T1

T1-RUS2
T2
T3

T3-ETH
T3-OSA

T4
T4-CEU1

T5
T5-Madrid2
T5-RUS1
T-tuscany

X
X1
X2
X3

one or more of the data features (specifically in the MIRU data) may be missing,

and parts or even all of the classification labels may be unknown for a particular

isolate.

Of the two genotyping methods (spoligotyping and MIRU fingerprinting),

spoligotyping was developed earlier; as a result, many MTBC genotype data sets

have a limited number of isolates with both MIRU and spoligotype type data. The

rest of the data only provides spoligotype information, leaving the MIRU values

blank. In order to use all the data in the combined data set, any model and training

algorithm must be able to properly handle this missing data.
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Table 1.2: Ancestral three-level MTBC strain lineages.

Ctop Cmid Csub

Indo-Oceanic

Bangladesh
EAI6-BGD1
EAI7-BGD2

India EAI3-IND
Manila EAI2-Manila
Mexico EAI-Mexico

Nonthaburi EAI2-nonthaburi
Vietnam EAI4-VNM

Unknown Mid-level
EAI1-SOM

EAI2
EAI8-MDG

Mycobacterium africanum
West African 1

AFRI 2
AFRI 3

West African 2 AFRI 1

Mycobacterium bovis Mycobacterium bovis
BOV 1
BOV 2
BOV 3

Mycobacterium canettii Mycobacterium canettii Canettii
Mycobacterium caprae Mycobacterium caprae Caprae
Mycobacterium microti Mycobacterium microti Microti
Mycobacterium mungi Mycobacterium mungi M. mungi

Mycobacterium pinnipedii Mycobacterium pinnipedii
Pini1
Pini2

Given the fact that the data originally comes from multiple data sources which

do not have the same number of data labels as the final combined data set, many of

the data labels are missing one or more of the Ctop, Cmid, and CSub data labels. For

example, data from the CDC data set cannot typically be mapped down to the Csub

level, meaning that while the Ctop and Cmid for a CDC isolate are set, the Csub

remains unlabeled. Thus, a standard supervised learning algorithm for estimating

the parameter of a model will be insufficient for this data set, requiring the use of

semi-supervised estimation techniques.

1.4 Existing Tuberculosis Lineage Models

Several models have already been developed to either classify or cluster MTBC

data into lineages. The SPOTCLUST approach [11] describes an unsupervised

model and learning algorithm to determine sublineage labels of MTBC strains.

SPOTCLUST models the MTBC spoligotype data as a mixture model, and uses

the widely-used expectation-maximization (EM) algorithm to estimate the model’s

parameters. This method provides the basis for much of the work in this thesis.

A fully-supervised approach using a conformal Bayesian network (CBN) is
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presented in [12]. This approach uses both spoligotype and MIRU data to classify

the top-level lineages for MTBC strains. Another supervised approach presented

in [13] provides a set of rules for classifying the top-level lineages, also using both

spoligotype and MIRU data.

1.5 Semi-supervised Approach for MTBC Lineage Model-

ing

This thesis builds upon the approaches described in Section 1.4 by extending

the single-level models into a multi-tier model which can capture the top-level, mid-

level, and sub-level lineages available in the combined data set. The goal of this

work is to utilize all of the spoligotype and MIRU data available to provide a model

that effectively classifies new MTBC strains with all three levels of labels, providing

a basic phylogenetic tree for each strain.

In order to accommodate the specific characteristics of the data set described

in Section 1.3, and in particular the fact that much of the data set is partially-labeled

(as described in Section 1.3.2), the approach described in this thesis uses a semi-

supervised parameter estimation algorithm based on the EM algorithm commonly

used in unsupervised data clustering tasks.

1.6 Structure

Chapter 2 describes the three-tier lineage model, building upon a simpler

single-tier model similar to that described in [11]. Chapter 3 discusses the EM

algorithm used to estimate the parameters in the models described in Chapter 2.

Chapter 4 show the results form comparing the effectiveness of the single-tier and

multi-tier models on the data set described in Section 1.3, following by a conclusion

and references.

Chapter A in the appendix includes details that supplement Chapter 3 by

providing extra mathematical derivations of the EM update steps.



CHAPTER 2

Hierarchical Model for MTBC Classification

This chapter reviews potential models for phylogenetic classification and clustering

of MTBC strains using hierarchical Bayesian models. Algorithms used to estimate

the parameters of these models are described in Section 3.1.

2.1 Overview

Two styles of models for the modeling of MTBC strains are discussed in this

thesis: a single-tier model that provides a one-level phylogenetic classification; and

a hierarchical three-tier model that provides a top-level lineage, a mid-level lineage,

and a sub-level lineage for each isolate.

The single-tier model is based on the SPOTCLUST algorithm [11], and pro-

vides a model allowing for a single-label classification / clustering of MTBC strains

based on their spoligotypes and MIRU values. The basic set of labels considered

for this model are only those listed in the Csub column in Table 1.1 and Table 1.2,

ignoring the Cmid and Ctop labels. The single-tier model in this thesis uses a similar

approach to SPOTCLUST, expanding beyond that work by including MIRU values.

Additionally, as discussed in Section 3.1.4, the training of these models incorporates

existing data labels in a semi-supervised fashion.

The multi-tier model extends this single-tier model by providing a three-tier

phylogenetic structure for the classification / clustering of MTBC strains. For the

purposes of this model, each isolate in the data set can have up to three labels: a

top-level lineage, and mid-level lineage, and a sub-level lineage, with the possibility

that one or more of these labels is unlabeled. The base set of labels used in this

models is provided in Tables 1.1 and 1.2.

Section 2.2 discusses general notation used in all the described models. Sec-

tion 2.3 describes a simple single-tier model where the characteristics of a strain

depend only upon a single label. Section 2.4 describes a slightly more complicated

single-tier model that incorporates a “hidden parent”, which utilizes some knowledge

8
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of how spoligotypes evolve in strains of MTBC. Section 2.5 describes the multi-tier

model.

2.2 General Notation

Let n be the number of data examples in a data set, where each example

xi = (si,mi) for i = 1, . . . , n is composed of spoligotype measurements si and

MIRU measurements mi. Let X be the entire set of n data examples, X = (S,M),

where S is the set of all spoligotype measurements and M is the set of all MIRU

measurements.

Each spoligotype measurement is a set of DS binary values, si ∈ {0, 1}DS , and

each MIRU measurement is a set of DM categorical values, mi ∈ {q1, . . . , qR}DM .

In this case, DS is the number of spoligotype values for a single example, DM is

the number of MIRU values, and R is the number of different categories the MIRU

value can take.

For our data, R = 20, the twenty different categories a MIRU value can take:

{0, . . . , 9, A,R, S, T, U, V,W,X, Y, Z}. These represent the MIRU values 0-9, 10+

(represented by A), and R-Z. Additionally, for our data, we have 43 spoligotype

measurements and 12 MIRU values, so DS = 43 and DM = 12.

We use the Iverson bracket notation [P ], which specifies a function that returns

1 when the logical statement P within the square brackets is true, and 0 otherwise.

2.3 Single-Tier Model

The simplest model that we consider is a single-level probabilistic classification

model similar to a näıve Bayes classifier or mixture model, wherein the probability

of each spoligotype or MIRU measurement is solely dependent on the label of the

data example, and independent of the other measurements.

Let C be a random variable representing the classification of an isolate, dis-

tributed as a categorical variable with k possible classifications {c1, . . . , ck}.
The probability of a particular data example with measurements si,mi given
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C

S M

DS DM

Figure 2.1: Template Diagram for Single-Tier Sublineage Model.

a set of probability parameters Θ, summed over the k possible classifications, is

p(si,mi | Θ) =
k∑
j=1

p(cj)p(si | cj)p(mi | cj) .

The set of probability parameters Θ is composed of the probability parameters

which describe the component conditional distributions. The probability p(si | cj)
is a set of DS Bernoulli distributions given the class, one for each of the spoligotype

spacer, where each individual distribution given the class is p(sid | cj). This results

in the probability

p(si | cj) =

DS∏
d=1

p(sid | cj) =

DS∏
d=1

σsidjd (1− σjd)1−sid

where σjd is the probability of existence of the dth spoligotype spacer given class cj.

The probability p(mi | cj) is a set of DM categorical distributions (also called

discrete, multinoulli, or sometimes multinomial distributions) given the class, re-

sulting in the probability

p(mi | cj) =

DM∏
d=1

p(mid | cj) =

DM∏
d=1

µ
[mid=q1]
jd1 · · ·µ[mid=qR]

jdR

wherein µjdr is the probability of the dth MIRU locus having value qr (the rth

category) given class cj.

Finally, the probability p(cj) is the is simply the mixture weight p(cj) = αj.
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Combined, these parameters make up the parameter set

Θ = {αj}j=1,...,k ∪ {σjd}j=1,...,k, d=1,...,DS
∪ {µjdr}j=1,...,k, d=1,...,DM , r=1,...,R .

The log-likelihood of the parameters Θ is

logL(Θ) = log{p(S,M | Θ)} = log

{
n∏
i=1

p(si,mi | Θ)

}
=

n∑
i=1

log {p(si,mi | Θ)}

=
n∑
i=1

log

{
k∑
j=1

p(cj)p(si | cj)p(mi | cj)

}

=
n∑
i=1

log

{
k∑
j=1

αj

DS∏
d=1

σsidjd (1− σjd)1−sid
DM∏
d=1

µ
[mid=q1]
jd1 · · ·µ[mid=qR]

jdR

}
.

Maximization of this log-likelihood is difficult due to the summation over the k

possible label classifications. However, in our semi-supervised scenario, some of these

labels are known and the probability p(cj) is fixed at a value of 1 or 0 for those data

examples. For the unlabeled data points, we can include latent variables specifying

the choices of label for each of the unclassified data examples and maximize over

the expectation of these latent variables using a standard expectation-maximization

algorithm. This is described in detail in Section 3.1.1.

2.4 Single-Tier Sublineage Model With Hidden Parent As-

sumption

In existing studies of spoligotype evolution among strains of MTBC it has been

determined that the evolution of the strains typically results in the deletion of one

or more spacers. The insertion of new spacers as a very rare event. [17, 18, 19, 20].

The SPOTCLUST algorithm [11] introduced the concept of “Hidden Parents” to

model this phenomenon.

The idea behind the Hidden Parent is that if the distribution of a particular

class cj specifies that a particular spoligotype spacer is present (sid = 1) with high

probability, we should allow an observed isolate of that class to drop that spacer

with some probability greater than 0. However, if the distribution of a class cj
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specifies that a particular spoligotype spacer is absent, the chance that an observed

isolate of class cj has that particular spacer present should be very low.

To do this, we introduce a new hidden (and predefined) random variable be-

tween the class layer and the spoligotype layer, as seen in Figure 2.2.

C

H

S

M

DS

DM

Figure 2.2: Template Diagram for Single-Tier Model with Hidden Parent
Assumption.

With this hidden parent, the likelihood of a measurement i is

p(si,mi | Θ) =
k∑
j=1

p(cj)p(si | cj)p(mi | cj) =
k∑
j=1

p(cj)p(si | hi)p(hi | cj)p(mi | cj)

where k is the number of possible values of C (classifications), and Θ is the set of

probability parameters

Θ = {αj}j=1,...,k ∪ {σjd}j=1,...,k, d=1,...,DS
∪ {µjdr}j=1,...,k, d=1,...,DM , r=1,...,R

with p(cj) = αj,

p(hi | cj) =

DS∏
d=1

σhidjd (1− σjd)1−hid ,
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and

p(mi | cj) =

DM∏
d=1

µ
[mid=q1]
jd1 · · ·µ[mid=qR]

jdR .

The Hidden Parent is established with the predefined parameters

p(sid = 1 | hid = 1) = η11 , p(sid = 0 | hid = 0) = η00 ,

p(sid = 0 | hid = 1) = η01 = 1− η11 , p(sid = 1 | hid = 0) = η10 = 1− η00

where we set η11 = 0.9 and η10 = 10−7. These choices for η11 and η10, as suggested in

[11], enforce the asymmetric reliance of a spoligotype spacer upon the class: having

p(sid = 1 | hid = 1) = 0.9 allows for some chance of spoligotypes losing a spacer

even if p(hid | cj) = σjd is high. Conversely, having p(sid = 1 | hid = 0) = 10−7

prevents a spoligotype having a spacer if p(hid | cj) = σjd is low.

We can rewrite p(sid | hid) as

p(sid | hid) = (η11hid + η10(1− hid))sid(η01hid + η00(1− hid))1−sid

which allows us to compute p(si | cj) as

p(si | cj) =

DS∏
d=1

∑
ĥid∈{0,1}

p(sid | hid = ĥid)p(hid = ĥid | cj)

=

DS∏
d=1

(
ηsid11 η

1−sid
01 σjd + ηsid10 η

1−sid
00 (1− σjd)

)
=

DS∏
d=1

(η11σjd + η10(1− σjd))sid (η01σjd + η00(1− σjd))1−sid .
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The log-likelihood of the parameters Θ is

logL(Θ) = log {p(S,M | Θ)}

= log

{
n∏
i=1

p(si,mi | Θ)

}

=
n∑
i=1

log {p(si,mi | Θ)}

=
n∑
i=1

log

{
k∑
j=1

p(cj)p(si | cj)p(mi | cj)

}

=
n∑
i=1

log

{
k∑
j=1

αj

DS∏
d=1

(
ηsid11 η

1−sid
01 σjd + ηsid10 η

1−sid
00 (1− σjd)

)
DM∏
d=1

µ
[mid=q1]
jd1 · · ·µ[mid=qR]

jdR

}
.

Details of the expectation-maximization algorithm used to estimate these pa-

rameters are found in Section 3.1.2.

2.5 Multi-Tier Model With Hidden Parent Assumption

The other style of model we are considering is a hierarchical three-tier model.

This model is intended to correspond to the three-level data set labels described

in Section 1.3. Each isolate has three labels specifying its top-level, mid-level,and

sub-level classification.

Let A be the top-level classification of the measurement with kA possible clas-

sifications a1, . . . , akA . Let B be the mid-level classification of a measurement with

kB possible classifications b1, . . . , bkB . Let C be the sub-level classification of a mea-

surement with kC possible classifications c1, . . . , ckC .

The probability of a measurement i given the model diagrammed in Figure 2.3

is

p(si,mi | Θ) =

kA∑
u=1

kB∑
v=1

kC∑
j=1

p(au)p(bv | au)p(cj | bv)p(si | cj)p(mi | cj)
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A

B

C

H

S

M

DS

DM

Figure 2.3: Template Diagram for Multi-Tier Model with Hidden Parent
Assumption.

where Θ is the set of probability parameters

Θ = {αu}u=1,...,kA ∪ {βvu}v=1,...,kB , u=1,...,kA ∪ {γjv}j=1,...,kC , v=1,...,kB

∪ {σjd}j=1,...,kC , d=1,...,DS
∪ {µjdr}j=1,...,kC , d=1,...,DM , r=1,...,R

with p(au) = αu, p(bv | au) = βvu, p(cj | bv) = γjv,

p(si | cj) =

DS∏
d=1

(η11σjd + η10(1− σjd))sid (η01σjd + η00(1− σjd))1−sid
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as computed in Section 2.4, and

p(mi | cj) =

DM∏
d=1

µ
[mid=q1]
jd1 · · ·µ[mid=qR]

jdR .

The predefined parameters ηij are used to govern the hidden parent assump-

tion, and are defined in Section 2.4 as

p(sid = 1 | hid = 1) = η11 , p(sid = 0 | hid = 0) = η00 ,

p(sid = 0 | hid = 1) = η01 = 1− η11 , p(sid = 1 | hid = 0) = η10 = 1− η00 .

We again set η11 = 0.9 and η10 = 10−7.

The log-likelihood of the parameters Θ is

logL(Θ) = log {p(S,M | Θ)}

= log

{
n∏
i=1

p(si,mi | Θ)

}

=
n∑
i=1

log {p(si,mi | Θ)}

=
n∑
i=1

log

{
kA∑
u=1

kB∑
v=1

kC∑
j=1

p(au)p(bv | au)p(cj | bv)p(si | cj)p(mi | cj)

}

=
n∑
i=1

log

{
kA∑
u=1

αu

kB∑
v=1

βvu

kC∑
j=1

γjvp(si | cj)p(mi | cj)

}

Details of the expectation-maximization algorithm used to estimate these pa-

rameters are found in Section 3.1.3.

An important note to consider is that the model described in this section

allows for more freedom than the lineage hierarchy displayed in Tables 1.1 and 1.2.

In this model, each isolate could conceivably be classified with any one of the possible

top-level, mid-level and sub-level labels. As a result, this model could classify an

isolate as having a CSub or Cmid label that does not correspond to the Ctop label as

expected by the hierarchy. As we discuss in Section 4.2, this has some interesting

consequences.



CHAPTER 3

Methodology

This chapter discusses the methods used to estimate the parameters of the mod-

els described in Chapter 2. Section 3.1 describes the details of the expectation-

maximization (EM) algorithm as applied to the single-tier and multi-tier models.

Section 3.2 describes the methods used to initialize the EM algorithm (to avoid get-

ting stuck in local maxima) along with the techniques used to validate the model.

Section 3.3 describes the techniques used to select the appropriate number of avail-

able extra top-level, mid-level, and sub-level labels.

3.1 Expectation-Maximization Algorithm

The expectation-maximization (EM) algorithm is an iterative method for solv-

ing difficult maximum-likelihood problems [21, 22]. The general EM approach pre-

supposes that for each data example without a label, there exists an unobserved data

label (called a latent variable). By doing so, the calculation of the maximization of

the likelihood becomes tractable.

In order to compute the maximization of the likelihood, we must first compute

the expected value of the latent variables given a certain set of observed (non-latent)

variables as well as an existing parameterization of the underlying model. Note that

for the first iteration of this algorithm, the model parameterization must be set to

some initial value.

Once the computation of the expectation of the latent variables is complete,

the likelihood maximization of the model parameters given these expected values

becomes easily computable.

Sections 3.1.1, 3.1.2, and 3.1.3 describe the computation of the expectation

of the latent variables and the estimated parameter values that result from the

maximization process. Section 3.1.4 describes the method used to extend the EM

algorithm to be able to use partially-labeled data. Section 3.1.5 describes exten-

sions to the EM update steps which allow for repeated isolates in the data set.

17
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Section 3.1.6 describes the method used for dealing with missing MIRU values. Fi-

nally Section 3.1.7 discusses enhancements made to the EM algorithm which leverage

prior distributions of the model parameters.

3.1.1 EM for Single-Tier Sublineage Model

Recall from Section 2.3 the observed log-likelihood of the parameters Θ for a

single-tier sublineage model,

logL(Θ) = log

{
n∏
i=1

p(si,mi | Θ)

}

=
n∑
i=1

log

{
k∑
j=1

αj

DS∏
d=1

σsidjd (1− σjd)1−sid
DM∏
d=1

µ
[mid=q1]
jd1 · · ·µ[mid=qR]

jdR

}
.

The approach used for the derivation of the EM algorithm in this and the

following sections is based on the method presented in [21].

Adding in a set of unobserved measurements Z which specifies the unob-

served data (the choice cj for each unlabeled measurement), we have a complete

log-likelihood

logLC(Θ) = log p(S,M,Z | Θ) .

This complete log-likelihood has an expectation, given the observed data and pa-

rameter estimates at a certain iteration t, expressed as EZ [logLC(Θ) | S,M,Θ(t)].

Thus, we seek to iteratively find the parameters that maximize this expectation

Θ(t+1) = arg max
Θ

EZ [logLC(Θ) | S,M,Θ(t)] .

The unobserved variables Z can be represented by a matrix Z ∈ Rn×k where

zij is 1 if the data example i was generated by component j, and 0 otherwise.
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To compute the complete log-likelihood, we find

logLC(Θ) = log {p(S,M,Z | Θ)} = log

{
n∏
i=1

[
k∑
j=1

zijp(si,mi | Θ)

]}

=
n∑
i=1

log

{
k∑
j=1

zijp(si,mi | Θ)

}
.

Because the latent variable zij = 1 for only one j, we can move the zij term and the

inner summation out of the logarithm as follows:

logLC(Θ) =
n∑
i=1

k∑
j=1

zij log {p(si,mi | Θ)} .

Now we can compute

Θ(t+1) = arg max
Θ

EZ [logLC(Θ) | S,M,Θ(t)]

= arg max
Θ

EZ

[
n∑
i=1

k∑
j=1

zij log {p(si,mi | Θ)}

∣∣∣∣∣ S,M,Θ(t)

]

= arg max
Θ

n∑
i=1

k∑
j=1

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

log {p(si,mi | Θ)} . (3.1)

Equation 3.1 expresses the maximization problem which can be iteratively solved

to find a local maximum parameter estimate for the single-tier model.

It is important to note that the expectation of zij can be computed as

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

= 0 · p(zij = 0 | si,mi,Θ
(t)) + 1 · p(zij = 1 | si,mi,Θ

(t))

= p(zij = 1 | si,mi,Θ
(t)) ,

which is the probability that measurement i is is labeled with classification j. This

is equivalently

EZ
[
zij | si,mi,Θ

(t)
]

= p(cj | si,mi,Θ
(t))
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where

p(cj | si,mi,Θ
(t)) =

p(si,mi | cj)p(cj)
p(si,mi)

=
p(si | cj)p(mi | cj)p(cj)

p(si)p(mi)

Now, we want to separately maximize for the parameters that make up the

probability p(si,mi | Θ): αĵ (for ĵ = 1, . . . , k), σĵd̂ (for ĵ = 1, . . . , k and d̂ =

1, . . . , DS), and µĵd̂r̂ (for ĵ = 1, . . . , k, d̂ = 1, . . . , DM , and r̂ = 1, . . . , R). The

derivations of the solutions of these maximization problems are listed in Section A.1.

The final parameter estimate updates are

α
(t+1)

ĵ
=

∑n
i=1EZ

[
ziĵ
∣∣ si,mi,Θ

(t)
]

n
,

σ
(t+1)

ĵd̂
=

∑n
i=1EZ

[
ziĵ | si,mi,Θ

(t)
]
sid̂∑n

i=1EZ
[
ziĵ | si,mi,Θ(t)

] ,

µ
(t+1)

ĵd̂r̂
=

∑n
i=1EZ

[
ziĵ
∣∣ si,mi,Θ

(t)
]∑R

r=1

∑n
i=1EZ

[
ziĵ | si,mi,Θ(t)

]
[mid̂ = qr]

.

The expectation-maximization algorithm begins by establishing an initial set

of values Θ(0). Then, each of the expectations EZ [zij | si,mi,Θ
(t)] for i = 1, . . . , n

and j = 1, . . . , k is computed and a new set of parameters Θt+1 is produced given

the update steps above. These iterations continue until convergence is reached.

3.1.2 EM for Single-Tier Sublineage Model with Hidden Parent

From Section 2.4, the observed log-likelihood of the parameters Θ is

logL(Θ) = log

{
n∏
i=1

p(si,mi | Θ)

}

=
n∑
i=1

log

{
k∑
j=1

αj

DS∏
d=1

(
ηsid11 η

1−sid
01 σjd + ηsid10 η

1−sid
00 (1− σjd)

)
DM∏
d=1

µ
[mid=q1]
jd1 · · ·µ[mid=qR]

jdR

}
.

Similar to as in Section 3.1.1, if we add in a set of unobserved measures Z

which specify the unobserved data (again, the choice cj for each measurement), we
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have a complete log-likelihood

logLC(Θ) = log p(S,M,Z | Θ)

and we seek to find the parameters that maximize the expectation

Θ(t+1) = arg max
Θ

EZ [logLC(Θ) | S,M,Θ(t)] .

We again represent the unobserved variables as a matrix Z ∈ Rn×k where

zij is 1 if the data example was generated by component j, and 0 otherwise. The

expectation-maximization equation to solve is, as before,

Θ(t+1) = arg max
Θ

n∑
i=1

k∑
j=1

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

log {p(si,mi | Θ)} (3.2)

with

EZ
[
zij | si,mi,Θ

(t)
]

= p(cj | si,mi,Θ
(t)) =

p(si | cj)p(mi | cj)p(cj)
p(si)p(mi)

.

Now, we want to separately maximize for the parameters that make up the

probability p(si,mi | Θ): αĵ (for ĵ = 1, . . . , k), σĵd̂ (for ĵ = 1, . . . , k and d̂ =

1, . . . , DS), and µĵd̂r̂ (for ĵ = 1, . . . , k, d̂ = 1, . . . , DM , and r̂ = 1, . . . , R).

Section A.2 demonstrates the computation of the maximization these param-

eters that make up the probability p(si,mi | Θ). The final parameter estimate

updates are

α
(t+1)

ĵ
=

∑n
i=1EZ

[
ziĵ
∣∣ si,mi,Θ

(t)
]

n
,

σ
(t+1)

ĵd̂
=

∑n
i=1EZ

[
ziĵ
∣∣ si,mi,Θ

(t)
]

(sid̂ − η10)
(η11 − η10)

∑n
i=1EZ

[
ziĵ | si,mi,Θ(t)

] ,
µ
(t+1)

ĵd̂r̂
=

∑n
i=1EZ

[
ziĵ
∣∣ si,mi,Θ

(t)
]∑R

r=1

∑n
i=1EZ

[
ziĵ | si,mi,Θ(t)

]
[mid̂ = qr]

.

As in Section 3.1.1, the expectation-maximization algorithm proceeds by first

establishing an initial set of values Θ(0). Then, we iteratively compute each of the
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expectations EZ [zij | si,mi,Θ
(t)] for i = 1, . . . , n and j = 1, . . . , k, and produce

a new set of parameters Θt+1 given these update steps. These iterations continue

until convergence is reached.

3.1.3 EM for Multi-Tier Sublineage Model with Hidden Parent

Recall the three-tier model from Section 2.5, which has the observed log-

likelihood of the parameters Θ

logL(Θ) = log

{
n∏
i=1

p(si,mi | Θ)

}

=
n∑
i=1

log

{
kA∑
u=1

kB∑
v=1

kC∑
j=1

p(au)p(bv | au)p(cj | bv)p(si | cj)p(mi | cj)

}
.

Using a similar approach to the single-tier expectation-maximization process,

we add a set of unobserved data measurements W = X ∪ Y ∪ Z which specify the

choices au,bv, and cj for each measurement. This gives the complete log-likelihood

logLC(Θ) = log p(S,M,W | Θ)

which has the expectation given the observed data EW [logLC(Θ) | S,M,Θ(t)]. We

seek to find the parameters that maximize this expectation

Θ(t+1) = arg max
Θ

EW [logLC(Θ) | S,M,Θ(t)] .

The unobserved variables can be represented by matrices X ∈ Rn×kA , Y ∈
Rn×kB , and Z ∈ Rn×kC . Each value in the matrix (for example, xiu) is 1 if the

data example was labeled with that top-level, mid-level, or sub-level label, and 0

otherwise.
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To compute the complete log likelihood, we find

logLC(Θ) = log {p(S,M,W | Θ)}

= log

{
n∏
i=1

(
kA∑
u=1

xiu

kB∑
v=1

yiv

kC∑
j=1

zijp(si,mi | Θ)

)}

=
n∑
i=1

log

{
kA∑
u=1

xiu

kB∑
v=1

yiv

kC∑
j=1

zijp(si,mi | Θ)

}
.

Because xiu = 1 for only one u, yiv = 1 for only one v, and xij = 1 for only one j,

we can move these terms and the inner summations out of the logarithm as follows:

logLC(Θ) =
n∑
i=1

kA∑
u=1

xiu

kB∑
v=1

yiv

kC∑
j=1

zij log {p(si,mi | Θ)} .

Next, we can compute the maximization of the parameters given the expecta-

tion, written as

Θ(t+1) = arg max
Θ

EW [logLC(Θ) | S,M,Θ(t)]

= arg max
Θ

EW


n∑
i=1

∑
u=1,...,kA
v=1,...,kB
j=1,...,kC

xiuyivzij log {p(si,mi | Θ)}

∣∣∣∣∣∣∣∣∣∣
S,M,Θ(t)


= arg max

Θ

n∑
i=1

∑
u=1,...,kA
v=1,...,kB
j=1,...,kC

EW
[
xiuyivzij

∣∣ si,mi,Θ
(t)
]

log {p(si,mi | Θ)} (3.3)

To compute the expectation of xiuyivzij, we note that, much like in Sec-

tion 3.1.1, the expectation of a particular set of labels is equivalent to the probability
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of those labels:

EW
[
xiuyivzij

∣∣ si,mi,Θ
(t)
]

= p(xiu = 1, yiv = 1, zij = 1 | si,mi,Θ
(t))

= p(au, bv, cj | si,mi,Θ
(t))

=
p(au, bv, cj, si,mi)

p(si,mi)

=
p(si | cj)p(mi | cj)p(cj | bv)p(bv | au)p(au)

p(si)p(mi)
.

Equation 3.3 is solved for an established EW
[
xiuyivzij

∣∣ si,mi,Θ
(t)
]

by sepa-

rate maximizing the parameters αû, βv̂û, γĵv̂, σĵd̂,and µĵd̂r̂ separately. The derivations

of these maximizations are provided in Section A.3. The final parameter estimate

updates are

α
(t+1)
û =

∑n
i=1

∑
v=1,...,kB
j=1,...,kC

EW
[
xiûyivzij

∣∣ si,mi,Θ
(t)
]

n

β
(t+1)
v̂û =

∑n
i=1

∑kC
j=1EW

[
xiûyiv̂zij

∣∣ si,mi,Θ
(t)
]∑n

i=1

∑
v=1,...,kB
j=1,...,kC

EW [xiûyivzij | si,mi,Θ(t) ]

γ
(t+1)

ĵv̂
=

∑n
i=1

∑kA
u=1EW

[
xiuyiv̂ziĵ

∣∣ si,mi,Θ
(t)
]∑n

i=1

∑
u=1,...,kA
j=1,...,kC

EW [xiuyiv̂zij | si,mi,Θ(t) ]

σ
(t+1)

ĵd̂
=

∑n
i=1

∑
u=1,...,kA
v=1,...,kB

EW
[
xiuyivziĵ

∣∣ si,mi,Θ
(t)
]

(sid̂ − η10)

(η11 − η10)
∑n

i=1

∑
u=1,...,kA
v=1,...,kB

EW
[
xiuyivziĵ | si,mi,Θ(t)

]
µ
(t+1)

ĵd̂r̂
=

∑n
i=1

∑
u=1,...,kA
v=1,...,kB

EW
[
xiuyivziĵ

∣∣ si,mi,Θ
(t)
]

∑R
r=1

∑
u=1,...,kA
v=1,...,kB

∑n
i=1EZ

[
xiuyivziĵ | si,mi,Θ(t)

]
[mid̂ = qr]

.

3.1.4 Semi-supervised EM

The EM algorithm can be adapted to account for partially-labeled data by

noting that when the label is known for a particular isolate, the summation over the

possible classification labels within the log-likelihood function simplifies to a single

probability. As a result, that term of the full log-likelihood becomes tractable [23].

An equivalent way to consider the case of a partially-labeled data example is

when you examine the complete log-likelihood (with the single-tier model presented
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here for simplicity):

logLC(Θ) =
n∑
i=1

k∑
j=1

zij log {p(si,mi | Θ)} .

In the case of labeled data, the normally-latent variable zij is actually observed,

with zij = 1 when isolate i has class j. The rest of the EM computation proceeds

normally, substituting the constant value 1 or 0 for zij as appropriate for labeled

data.

For the multi-tier model, the same logic applies. The complete log-likelihood

logLC(Θ) =
n∑
i=1

kA∑
u=1

xiu

kB∑
v=1

yiv

kC∑
j=1

zij log {p(si,mi | Θ)}

is simplified when one or more of xiu, yiv, and zij are actually known values instead

of latent variables.

3.1.5 Modifications to EM Algorithm for Repeated Isolates

The update steps presented for each of the models in Section 3.1 assume that

each data example in the data set is limited to a single identified strain of MTBC.

Thus, if two strains are identified with the same spoligotype and MIRU measure-

ments, they would have to be represented with different examples in the data set.

Alternatively, the EM updates can incorporate these repeated strains by in-

cluding only one instance of a repeated isolate and using the repetition count infor-

mation within the update step itself.

Let `i be the number of times isolate i is repeated in the database, and let

N =
∑n

i=1 `i be the total number of all occurrences of all strains in the database.

The log-likelihood of the models can be altered to include this informaion, causing

changes to the parameter updates as well.

For example, for the multi-tier model, the log-likelihood becomes

logL(Θ) =
n∑
i=1

`i log

{
kA∑
u=1

αu

kB∑
v=1

βvu

kC∑
j=1

γjvp(si | cj)p(mi | cj)

}
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which in turn causes the parameter updates to become

α
(t+1)
û =

∑n
i=1 `i

∑
v=1,...,kB
j=1,...,kC

EW
[
xiûyivzij

∣∣ si,mi,Θ
(t)
]

N

β
(t+1)
v̂û =

∑n
i=1 `i

∑kC
j=1EW

[
xiûyiv̂zij

∣∣ si,mi,Θ
(t)
]∑n

i=1 `i
∑

v=1,...,kB
j=1,...,kC

EW [xiûyivzij | si,mi,Θ(t) ]

γ
(t+1)

ĵv̂
=

∑n
i=1 `i

∑kA
u=1EW

[
xiuyiv̂ziĵ

∣∣ si,mi,Θ
(t)
]∑n

i=1 `i
∑

u=1,...,kA
j=1,...,kC

EW [xiuyiv̂zij | si,mi,Θ(t) ]

σ
(t+1)

ĵd̂
=

∑n
i=1 `i

∑
u=1,...,kA
v=1,...,kB

EW
[
xiuyivziĵ

∣∣ si,mi,Θ
(t)
]

(sid̂ − η10)

(η11 − η10)
∑n

i=1 `i
∑

u=1,...,kA
v=1,...,kB

EW
[
xiuyivziĵ | si,mi,Θ(t)

]
µ
(t+1)

ĵd̂r̂
=

∑n
i=1 `i

∑
u=1,...,kA
v=1,...,kB

EW
[
xiuyivziĵ

∣∣ si,mi,Θ
(t)
]

∑R
r=1

∑
u=1,...,kA
v=1,...,kB

∑n
i=1 `iEZ

[
xiuyivziĵ | si,mi,Θ(t)

]
[mid̂ = qr]

.

3.1.6 Modifications to EM Algorithm for Missing Data

As mentioned in Section 1.3.2, many of the isolates in the data set are missing

one or more MIRU values. There are two possible ways of dealing with this missing

data: by treating the missing MIRU values as additional unobserved latent variables

and computing the expectation over these values as part of the EM algorithm,

or—due to the condition independence between MIRU values given the class—the

missing values can be ignored and the log-likelihood computed over the remaining

values. In this thesis, as in [12], the latter approach is used, saving expensive latent

variable computations at every iteration of the algorithm.

Thus, the computation of the MIRU probability given the class cj

p(mi | cj) =

DM∏
d=1

p(mid | cj)

becomes instead the product of the probabilities for each d where mid is not a missing

MIRU value:

p(mi | cj) =
∏

d∈{d̃ : mid̃ is not missing}
p(mid | cj) .
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3.1.7 Computing Maximum a Posteriori (MAP) Estimates

As described in [21], we can provide some regularization over the parameters

being estimated in the EM algorithm by incorporating a prior distribution over these

model parameters. This will have two benefits: it avoids overfitting to the data, and

it can incorporate expert knowledge regarding these parameters.

When computing MAP estimates, instead of maximizing the likelihood of the

data given the parameters, we are instead maximizing the mode of the posterior

distribution of the parameters

p(Θ | S,M) ∝ p(S,M | Θ)p(Θ)

The general maximization problem for EM will consider the function

log{p(Θ | S,M)} ∝ log p(S,M | Θ)p(Θ)

=
n∑
i=1

log

{
k∑
j=1

p(cj)p(si | cj)p(mi | cj)

}
+ log{p(Θ)}

instead of the log-likelihood.

Adding a prior distribution p(Θ) to the models described in Chapter 2 is not

a complex task. For the Bernoulli distributions used within the models to represent

spoligotype spacer probabilities, the conjugate prior is the beta distribution. The

two parameters of the beta distribution are often called psuedo-counts when used as

a prior to the Bernoulli, as they can be thought of an initial number of “successes”

and “failures” of the prior distritbution. In the case of the spoligotype spacer distri-

butions, these psuedo-counts represent the prior knowledge of the number of isolates

in a class that have the particular spacer present (“successes”) or absent (“failures”).

The conjugate prior to the categorical distribution (used for the class proba-

bilties as well as the MIRU probabilities) is the Dirichlet distribution. Similarly to

the beta distribution for the beta-Bernoulli model, the Dirichlet distribution in the

Dirichlet-categorical model is parameterized by a set of pseudo-counts which can be

thought of as the number of initial counts for each of the categories for with the

Dirichlet distribution—and thus the categorical distribution—is defined.
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Without demonstrating the entire revised calculation of the EM update steps

(discussion of these calculations can be found in [21]), the end result of incorporating

the Dirichlet and beta priors to these calculations involves a fairly simple midificaiton

to the the update steps.

For example, let us consider the α = {αu}u=1,...,kA parameters with a Dirichlet

prior α ∼ Dir(kA, α̃), where α̃ = {α̃u}u=1,...,kA are the pseudo-counts for the prior

of α. The EM-update step for the αu parameter becomes:

α
(t+1)
û =

∑n
i=1

∑
v=1,...,kB
j=1,...,kC

EW
[
xiûyivzij

∣∣ si,mi,Θ
(t)
]

+ α̃û

n+
∑kA

u=1 α̃u
.

Using similar notation for the β parameters, consider, for each û = 1, . . . , kA,

the parameters βû = {βvû}v=1,...,kB with a Dirichlet prior βû ∼ Dir(kB, β̃û) where

β̃û = {β̃vû}v=1,...,kB are the pseudo-counts for the prior of βû. The EM-update step

for βvu considering this prior is

β
(t+1)
v̂û =

∑n
i=1

∑kC
j=1EW

[
xiûyiv̂zij

∣∣ si,mi,Θ
(t)
]

+ β̃v̂û∑n
i=1

∑
v=1,...,kB
j=1,...,kC

EW [xiûyivzij | si,mi,Θ(t) ] +
∑kB

v=1 β̃vû
.

Following the same pattern, the γjv update becomes

γ
(t+1)

ĵv̂
=

∑n
i=1

∑kA
u=1EW

[
xiuyiv̂ziĵ

∣∣ si,mi,Θ
(t)
]

+ γ̃ĵv̂∑n
i=1

∑
u=1,...,kA
j=1,...,kC

EW [xiuyiv̂zij | si,mi,Θ(t) ] +
∑kC

j=1 γ̃jv̂
.

For the σ parameters update, let us consider, for each ĵ = 1, . . . , kC and

d̂ = 1, . . . , DS, the parameter σĵd̂ has a beta prior σĵd̂ ∼ Beta(σjd+, σjd−) with the

pseudo-counts σjd+ and σjd+, where σjd+ is the pseudo-count of class cj having a

spacer present in position d, and σjd− is the pseudo-count of class cj not having a

spacer present in position d. The EM-update step for σjd becomes

σ
(t+1)

ĵd̂
=

∑n
i=1

∑
u=1,...,kA
v=1,...,kB

EW
[
xiuyivziĵ

∣∣ si,mi,Θ
(t)
]

(sid̂ − η10) + σjd+

(η11 − η10)
∑n

i=1

∑
u=1,...,kA
v=1,...,kB

EW
[
xiuyivziĵ | si,mi,Θ(t)

]
+ σjd+ + σjd−

.
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Finally, for the µ parameters, for each ĵ = 1, . . . , kC and d̂ = 1, .., DM , the

parameters µĵd̂ = {µĵd̂r}r=1,...,R have a Dirichlet prior µĵd̂ ∼ Dir(R, µ̃ĵd̂) where

˜µˆj ˆd
= {µ̃ĵd̂r}r=1,...,R are the pseudo-counts for the prior of µĵd̂. The EM-update step

for µjdr with this prior is

µ
(t+1)

ĵd̂r̂
=

∑n
i=1

∑
u=1,...,kA
v=1,...,kB

EW
[
xiuyivziĵ

∣∣ si,mi,Θ
(t)
]

+ µ̃ĵd̂r̂∑R
r=1

∑
u=1,...,kA
v=1,...,kB

∑n
i=1EZ

[
xiuyivziĵ | si,mi,Θ(t)

]
[mid̂ = qr] +

∑R
r µ̃ĵd̂r

.

The choice of prior parameters (the pseudo-counts) can have a significant

effect on the resulting model, depending on the amount of data being used to train

the model. For the models used in this thesis, weak priors for the α, β, and γ

distributions were set from historical data and models.

The priors for σjd, for each d, were set to the average of the counts in the

database over all j. This ensures that if a spoligotype at a particular locus tends to

have a certain value (either positive or negative) over all classes, the prior estimate

will tend to that same value. Similarly, for µjdr, for each d the priors were set to

the average of the counts in the database over all j. In the data set used, some

MIRU loci values are very rare across all lineages, so using this type of prior ensures

that even for classes with very few data points, those MIRU loci values tend to the

MIRU loci values of other classes.

3.2 Model Initialization and Validation

The expectation-maximization algorithm requires a set of initial parameters

which are then iteratively improved until convergence is met. However, the EM

algorithm is only guaranteed to converge to a local maximum, and thus this choice

of initial parameters has a significant impact on the final model parameters.

Section 3.2.1 describes the heuristic approach used to escape the local max-

imum. Section 3.2.2 describes a Monte Carlo cross-validation (MCCV) technique

used to provide out-of-sample model validation metrics.
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3.2.1 Model Initialization

The approach used in this project for dealing with the local maximum problem

is random restarts. To find the best model, 100 randomly-initialized models are

generated using the same training data set. Each of these is models is trained to

convergence: a change in data point log-likelihood (the total data log likelihood

divided by the number of data points in the data set) less than 10−6, or a change

in the norm of parameter weights less than 5 × 10−8. The choice of 100 random

restarts was chosen heuristically, as a number that provides an excellent chance of

generating the best possible model; using any additional random restarts does not

tend to increase the quality of the resulting model.

Data

EM

Trained Model

100 repetitions

Figure 3.1: Schema for Random Repeat Initialization Approach used to
Compute Final Model.

After training each model, the total data log-likelihood for each model is com-

pared to each other and the model with the highest log-likelihood is selected.

3.2.2 Model Validation

For the purposes of validating our model generation approach, we employ

a Monte Carlo cross-validation (MCCV) approach [24] to measure the data log-

likelihood and classification accuracy of a test data set. In this approach, we re-

peatedly and randomly partition the data (sampling without replacement) into a

training and testing data set, where the training data set contains 80% of the full

data set and the test data set contains the remaining 20%.

For each of the data splits, we train the model using the training data set.
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Similar to as described in 3.2.1, we must repeat the training process multiple times

to ensure that the model being used for validation is not stuck in a local maximum.

Data

Testing Set Training Set

EM

Trained Model

Test Log-likelihood

30 reps. 30 splits

split

compute

Figure 3.2: Schema for MCCV Approach used to Compute Out-of-
sample Metrics.

Since the MCCV approach is used for testing the validity of our model gener-

ation approach and not for generating the best model, the full number of iterations

used in generating a final model (100 repeats) is not required. When using the

MCCV technique for comparing two models (for example, single-tier and multi-tier

models), we used 30 repetitions of the randomly-initialized EM algorithm, and 30

separate data splits.

Once the models are trained, the model is then used to classify the test data

set. Once classified, we can generate a confusion matrix between initial labels (if

labeled) and labels as classified by the trained model, which we can use to compute

accuracy measurements. We can also compute the test data log-likelihood. These

metrics were then either compared, for each split, against competing models, or

averaged over all the splits for the final out-of-sample metric.

As an alternative method to comparing models using out-of-sample test met-

rics, Section 3.3 describes a model selection process used to systematically compare
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different models and find the best model among several models with differing num-

bers of model parameters.

3.3 Model Selection

In the semi-supervised scenario, our algorithm is initialized with the same

number of classification labels—either k labels in the single-tier model, or kA, kB,

and kC labels in the multi-tier model—as exists in the data set. However, given that

many of the unlabeled data points may not appropriately fit in these existing labels,

or even in the same that some of the labeled data points would benefit by being split

off into a new classification, some extra flexibility to this number of classification

labels is required.

Unfortunately, it is not clear how many extra classification labels are required

to fit the data. One possible method to discover this “correct” number of labels

would be to use the MCCV approach described in Section 3.2.2, and compare test

log-likelihood values between models with varying numbers of extra classification

labels. However, the MCCV approach requires several splits, and several repetitions

per split, which takes an excessive amount of time.

To avoid the excessive amount of time required for the MCCV approach, we

instead consider an approach based on the Akaike information criterion (AIC) [25]

or the Bayesian information criterion (BIC) [26]. On the MTBC data set, both of

these criteria result in identical conclusions, and thus we concentrate on the AIC.

The formula for the AIC is

AIC = 2k − 2 log(L)

where L is the maximum log-likelihood of the data given the model and k is the

number of free parameter in the model. At its most basic level, the AIC is simply

the log-likelihood penalized by a measurement of the complexity of the model, thus

preventing model overfitting. Between two models, the model with the smaller AIC

should be chosen.

The AIC is used to compare different models using the following approach: for
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each of the possible numbers of extra classification labels, we train a model using

the entire data set. As in Section 3.2.1 and 3.2.2, to avoid getting stuck in a local

maximum, we repeat the training of this model (for each of the possible numbers

of extra classification numbers) multiple times and only calculate the AIC for the

model with the best log-likelihood.

Training Data

EM

Trained Model

AIC

30 reps.

For each k+

compute

Figure 3.3: Schema for Model Selection Approach. The variable k+ repre-
sents the various possible numbers of extra classification labels.

In the case of the multi-tier models, we must examine the possibility of adding

extra top-level, mid-level, and sub-level labels. To find the best number of extra

labels at these various levels, a grid search is performed over all the possible com-

binations, and the combination that provides the best AIC value is selected as the

best model to use.

Since this type of grid search over a three-dimensional input space can com-

putationally expensive, we limit the number of random-repeat repetitions used for

training a model: in our experiments, repeating 20 times provides a good trade-off

between speed of execution and the local maximum avoidance.

For the single-tier models, let k+ be the number of extra labels. The model

selection search was performed over the range k+ = [0, 24] (with every value between

0 and 24 attempted). For the multi-tier models, let k+A be the number of extra top-

level labels, k+B be the number of extra mid-level labels, and k+C be the number
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of extra sub-level labels. The grid search was performed over the ranges k+A =

[0, 3], k+B = [0, 8], and k+C = [0, 24]. These ranges were chosen as a result of initial

experimentation, and noticing that trying numbers of extra labels beyond these

ranges consistently provided lower AIC values.



CHAPTER 4

Results

In this section we examine the effectiveness of the multi-tier model. We begin by

comparing the single-tier hidden-parent model (described in Section 2.4) against

the multi-tier hidden-parent model (described in Section 2.5). Given the benefits of

the hidden parent approach demonstrated by SPOTCLUST [11], we did not include

a model without hidden parent nodes in our comparison. The description of the

single-tier model without hidden parents provided in Section 2.3 is provided instead

as an simple demonstration of the general modeling approach that is used in the

hidden parent models.

Our secondary experiment compares the spoligotype-only approach similar

to that used in [11] and the proposed spoligotype / MIRU approach discussed in

Chapter 2.

The data set used for compiling these results is presented and discussed in

Section 1.3.

Section 4.1 discusses the results of the comparisons of these models. Section 4.2

describes the details of the best probability model resulting from these comparisons

and provides some discussion of these results.

4.1 Experimental Results

We investigate four types of models: single-tier spoligotype-only, single-tier

with MIRU, multi-tier spoligotype-only, and multi-tier with MIRU. As described in

Section 3.3, each went through a model selection process wherein the best number

of extra labels was found for each. These results of these model selection efforts are

found in Section 4.1.1. After the model selection process, the selected model for each

model type being analyzed underwent Monte Carlo cross-validation using the same

training / testing data splits for each model type. The resulting test log-likelihood

and accuracy measurements are compared in Section 4.1.2.

35
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4.1.1 Model Selection Results

Since the data set consists of a significant number of unlabeled or partially-

labeled data examples, there exists a possibility that the existing number of labels

(presented in Tables1.1 and 1.2) are not sufficient for the data set. Some isolates

may not “fit” well into existing classification labels, and may require new labels to

be created in order to maximize the effectiveness of the model. Therefore, models

with extra labels were considered.

The model selection process used to determine how many extra labels to use is

discussed in Section 3.3. This method—which uses the Akaike Information Criterion

(AIC) to regulate the trade-off between goodness-of-fit of a model based on the

training data and the model’s complexity—provides the results found in this section.

Table 4.1 shows the results for finding an appropriate number of extra labels

for single-tier models. In this table, k+ represents the best additional number of

labels used by the model, as determined by comparing the AIC of several different

models of varying size.

Table 4.1: Model Selection Results for Single-tier Model Types.

Model Type k+

Single-tier spoligotype-only 3
Single-tier spoligotype & MIRU 6

Figures 4.1 and 4.2 show the plots of the model selection results for the single-

tier spoligotype-only and spoligotype & MIRU models. These graphs show the

negative AIC value plotted against the different possible numbers of extra labels,

and is averaged over 15 repetitions of the model selection process, with the standard

deviation shown on the plot with error bars. Note that a larger parameter space

was examined than is shown in these graphs; these graphs only show the areas of

the parameter space with the highest negative AIC value. The full parameter space

examined is discussed in Section 3.3.

Table 4.2 shows the results for finding an appropriate number of extra labels

for multi-tier models. In this table, k+A represents the additional number of top-level
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Figure 4.1: Model Selection Plot for Single-Tier Spoligotype-only Model.

Figure 4.2: Model Selection Plot for Single-Tier Spoligotype & MIRU
Model.

labels, k+B represents the additional number of mid-level labels, and k+C represents

the additional number of sub-level labels used by the model. As with the single-tier

model selection, the values of k+A , k+B , and k+C were determined by comparing the

AIC of several different models of varying size, as discussed in Section 3.3.

In both Table 4.1 and Table 4.2, the spoligotype & MIRU model uses more

extra labels than is spoligotype-only counterpart. This fact indicates that the inclu-

sion of MIRU data splits the data set into more lineage classifications, according to

the model, than considering spoligotype alone. Since the existing lineage hierarchy

is a result of predominantly spoligotype-only analyses, the requirement of additional

classification labels as a result of MIRU analysis is unsurprising.

Figures 4.3 and 4.4 show the plots of the model selection results for the multi-

tier spoligotype-only and spoligotype & MIRU models. These graphs show the

negative AIC value plotted against the different possible numbers of extra labels,
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Table 4.2: Model Selection Results for Multi-tier Model Types.

Model Type k+A k+B k+C
Multi-tier spoligotype-only 0 0 2

Multi-tier spoligotype & MIRU 0 0 6

and is averaged over 15 repetitions of the model selection process, with standard

deviation shown as error bars. Each set of plots shows the one-dimensional curve

of the AIC value; in actuality, the model selection process occurred over the three-

dimensional model selection space (the three dimensions being the extra number of

top-level, mid-level, and sub-level labels). Additionally, note that a larger parameter

space than is shown in these graphs was examined; these graphs only show the areas

of the parameter space with the highest negative AIC values. The grid over which

the entire parameter space was search is discussed in Section 3.3.

Figure 4.3: Model Selection Plots for Multi-Tier Spoligotype-only
Model.
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Figure 4.4: Model Selection Plots for Multi-Tier Spoligotype & MIRU
Model.

4.1.2 Model Comparison Results

Once an appropriate model is selected for each of the four model styles, these

model styles can then be compared to determine the best model to use for effective

modeling of this data. These comparisons all use the cross-validation techniques

described in Section 3.2.2

For the purposes of comparison, we must consider what metrics are best suited

when comparing the different models. The single-tier and multi-tier models cannot

be adequately compared via simple accuracy measurements, as accuracy measure-

ments typically only check if the actual label and predicted labels are the same.

Since the multi-tier models have three different labels, there can varying degrees of

“correctness” and “incorrectness” for a particular predicted label. Thus, to compare

single-tier and multi-tier models, we consider the cross-validated test log-likelihood

between the two models. This comparison is presented in Section 4.1.2.1.

When comparing the spoligotype-only and spoligotype & MIRU versions of

a model—either single-tier or multi-tier—the test log-likelihood does not provide
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a valid comparison metric. Since the spoligotype-only models do not take into

account any of the MIRU data, any computed test log-likelihood using MIRU data

for the combined spoligotype & MIRU model would be significantly smaller (as a

result of multiplying by the probability that each of the extra MIRU values occur).

However, comparing the classification accuracy of these two models does provide a

valid comparison metric: the single-tier spoligotype-only model can be compared to

the single-tier spoligotype & MIRU model, and the multi-tier spoligotype-only model

can be adequately compared to the spoligotype & MIRU model. This comparison

is presented in Section 4.1.2.2.

4.1.2.1 Multi-tier vs. Single-tier Models

Table 4.3 shows the test log-likelihood results comparing the single-tier and

multi-tier spoligotype & MIRU models, based on 60 splits of the data.

Table 4.3: Cross-validated Test Log-likelihood (Average ± Standard De-
viation) for Spoligotype & MIRU models.

Model Test Log-likelihood
Multi-tier Spoligotype & MIRU −28752± 289
Single-tier Spoligotype & MIRU −28901± 289

Table 4.3 shows the test log-likelihood results comparing the single-tier and

multi-tier spoligotype-only, based on 60 splits of the data.

Table 4.4: Cross-validated Test Log-likelihood (Average ± Standard De-
viation) for Spoligotype-only Models.

Model Test Log-likelihood
Multi-tier Spoligotype-only −17581± 207
Single-tier Spoligotype-only −17659± 180

To determine if the difference in the test log-likelihood is statistically signif-

icant, a paired t-test was performed between multi-tier and single-tier results for

both spoligotype & MIRU and spoligotype-only models, with the results presented
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in Table 4.5. For each comparison, the average difference between two log-likelihoods

is presented, along with the p-value of a one-tailed paired t-test, which indicates in

both cases that the multi-tier model provides a significantly better cross-validated

log-likelihood than the single-tier.

Table 4.5: Model Comparison Results with Average Improvement in
Cross-validated Test Log-likelihood and p-values from Paired
t-Test, Multi-tier vs. Single-tier.

Model A Model B LL Diff. p-value
Multi-tier Sp.&MIRU Single-tier Sp.&MIRU 148.94± 121.11 7.69× 10−14

Multi-tier Sp.-only Single-tier Sp.-only 77.49± 93.22 1.20× 10−8

4.1.2.2 Spoligotype & MIRU vs. Spoligotype-only models

Table 4.6 shows the cross-validated classification accuracy results comparing

the multi-tier spoligotype & MIRU and spoligotype-only models, based on 60 splits

of the data.

Table 4.6: Cross-validated Classification Accuracy (Average ± Standard
Deviation) for Multi-tier Models.

Model Classification Accuracy
Multi-tier Spoligotype & MIRU 91.97± 0.031

Multi-tier Spoligotype-only 91.53± 0.028

Table 4.7 shows the cross-validated classification accuracy results comparing

the single-tier spoligotype & MIRU and spoligotype-only models, based on 60 splits

of the data.

To determine if the difference in the cross-validated classification accuracy is

statistically significant, a paired t-test was performed between spoligotype & MIRU

and spoligotype-only results for both single-tier and multi-tier models, with the

results presented in Table 4.8. For each comparison, the average difference between

two classification accuracies is presented, along with the p-value of a one-tailed

paired t-test. These p-values indicate that, in both cases, the spoligotype & MIRU
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Table 4.7: Cross-validated Classification Accuracy (Average ± Standard
Deviation) for Single-tier Models.

Model Classification Accuracy
Single-tier Spoligotype & MIRU 91.71± 0.031

Single-tier Spoligotype-only 90.79± 0.040

model performs better than the spoligotype-only model in term of classification

accuracy, at a 0.05 significance level.

Table 4.8: Model Comparison Results with Average Improvement in
Cross-validated Classification Accuracy and p-values from
Paired t-Test, MIRU & Spoligotype vs. Spoligotype-only.

Model A Model B Acc. Diff. p-value
Multi-tier Sp.&MIRU Multi-tier Sp.-only 0.00432± 0.0143 0.0112
Single-tier Sp.&MIRU Single-tier Sp.-only 0.00916± 0.0322 0.0158

Based on the results in Tables 4.5 and 4.8, the multi-tier model that takes

advantage of both the MIRU and spoligotype data both provides a higher cross-

validated test log-likelihood than the single-tier model, and provides a more accurate

classifier than the spoligotype-only model, and thus is the best candidate model

among these tested models.

4.2 Resulting Probabilistic Lineage Model

After reviewing the model comparison statistics, the three-tier spoligotype &

MIRU model type using six extra sub-level labels proves to be the model type which

most effectively effectively models the data. Using the full model training process

described in Section 3.2.1 on the full combined data set, a final model was created.

Figure 4.9 shows the original data labels (Figure 4.9a) and predicted data la-

bels (Figure 4.9b) aggregated to only show the results for the combined top-level

lineage classification. Each figure shows the average (for the original data) or pro-

totype (for the predicted labels) spoligotypes and MIRU for these top-level classes.
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Figure 4.10 breaks down the labels in Figure 4.9 to show the the original data

labels (Figure 4.10a) and predicted data labels (Figure 4.10b) aggregated to show

the mid-level lineage classification.

Figures 4.11 and 4.12 break down these results even further, displaying the

original sub-level label information, which can be compared to the predicted sub-

level labels in Figures 4.13 and 4.14.

The spoligotype column in these figures shows the chance that a spoligotype

spacer occurs in each of the 43 possible locations, with a black box indicated a near-

certain probability of spacer, and a white box meaning a near-certain probability

of no spacer existing. Figure 4.5 shows an example which displays the spoligotype

probabilities from the data set, aggregated over the top-level labels. From this figure

one can see that, for example, the first three spoilgotype spacers for East-African

Indian lineage have a very high presence probability, while the next four spacers

are more likely to be absent. As an another example, for the Indo-Oceanic lineage,

the third spoligotype spacer has a fairly even probability of being either absent or

present. Figure 4.6 provides a legend for the various shades of gray shown for the

spoligotype spacers.

Figure 4.5: Spoligotype Label Example.

Figure 4.6: Spoligotype Spacer Data Legend.

The MIRU columns in these figures give a visual impression of the categorical
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probabilities for each of the 12 MIRU locations for an MTBC isolate. Figure 4.7

shows an example of the MIRU probabilities from the data set, aggregated over

the top-level labels. In each column a color bar is displayed which represents the

full probability distribution for that MIRU locus. The portion of the bar which

contains a particular color indicates the probability that the MIRU locus has the

value corresponding to that color as provided by the legend shown in Figure 4.8.

As an example, if we consider MIRU24 values, the East African Indian, East

Asian (Beijing), and Euro-American lineages have a very high probability of the

MIRU24 value being equal to 1. The remaining lineages have a high probability

of the MIRU24 value instead being equal to 2, or in the case of M. canetti, the

MIRU24 value is equal to 6. This corresponds to the distinction between modern and

ancestral lineages, and in fact the MIRU24 value is often looked to as an indicator

of the ancestral-modern distinction. Note that while some colors due repeat on the

MIRU legend in Figure 4.8, for the most part, the R-Z MIRU values are fairly rare

and do not often constitute a significant probability on these visualizations.

Figure 4.7: MIRU Label Example.

Figure 4.8: MIRU Categorical Data Legend.

The lineage results figures also contain the size information for each of the

labels (original or predicted). This number simply refers to the number of isolates

in each of the lineage classifications (aggregated over lower-level lineages, in the case

of the top-level and mid-level figures).

For the predicted label figures (Figures 4.9b, 4.10b, 4.13, and 4.14), the “Prob.”

column represents the probability for the specified label (in the column proceeding
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it). For instance, in Figure 4.9b, the “Prob.” column indicates the base probabil-

ity that corresponding top-level label is chosen in the model—the value αu from

Section 2.5. The values in the this column in Figure 4.9b sum to 1.

For the predicted label figured with multiple label levels, such as Figure 4.10b,

the “Prob.” column following a mid-level label represents the probability of the mid-

level label given the specified top-level label—the value βvu from Section 2.5. For

each unique top-level label, the values in the mid-level probability column should

sum to 1, and the values for unique top-level labels in the top-level probability col-

umn again sum to 1. For example, in Figure 4.10b, if we consider the M. africanum

rows, the chance for an isolate in M. africanum to be classified as “West African 1”

is 0.578, and the chance for an isolate to be classified as “West African 2” is 0.422.

In a similar fashion, in the sub-level predicted label figures (Figure 4.13 and

Figure 4.14), the “Prob.” column following the sub-level label represents the prob-

ability of the sub-level label given the specified mid-level label—the value γjv from

Section 2.5. These sub-level probability values sum to 1 for each mid-level label.

Figures 4.15 and 4.15 show the confusion matrices between the original data

set and the same data set as predicted by the model. These tables are provided to

display the isolates on which the model disagrees with the data set, and to show

which labels are assigned to those isolates that are originally unlabeled.

In Figures 4.15 and 4.16, some of the incorrect labelings are worthy of further

discussion.

Specifically, the ancestral (Indo-Oceanic, M. africanum, M. bovis, M. canetti,

M. caprae, M. microti, M. mungi, and M. pinnipedii) and the modern (Beijing, East-

African Indian, and Euro-American) lineages should be well-delineated. And while

the isolates labeled as modern lineages in the original data set normally are not classi-

fied as ancestral, there are some isolates in the Indo-Oceanic and M. africanum fam-

ilies which are being classified as Euro-American of East-African Indian. By looking

at the mid-level confusion matrix in Figure 4.16, we can see that a large portion of

these misclassified isolates stem from two separate misclassifications: some isolates

originally labeled as Indo-Oceanic/Bangladesh (top-level label as Indo-Oceanic and

mid-level label as Bangladesh) were misclassified as Euro-American/X (69 isolates),
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and some isolates that were only labeled as Indo-Oceanic at the top-level and were

missing a mid-level label were classified by the model as East-African Indian (46

isolates).

Upon further analysis of the misclassified Indo-Oceanic/Bangladesh isolates

by reviewing the sub-level label confusion matrix (which are not included in this

thesis for space) and by investigating the individual data examples, the reason for

this particular mistake is due to the fact that the Indo-Oceanic/Bangladesh iso-

lates that were misclassified did not possess MIRU data, and their spoligotype data

was fairly close to that of some spoilgotype patterns in the Euro-American/X lin-

eage. Examining Figure 4.13, the EAI7-BGD2 sub-level label has moved from Indo-

Oceanic/Bangladesh/EAI7-BGD2 to Euro-American/X/EAI7-BGD2. The isolates

labeled as EAI7-BGD2 had more spoligotype similarity to many isolates labeled in

Euro-American and thus were moved there by the model This indicates an incon-

sistency in the labeling between IP (who provided isolates with EAI7-BGD2 labels)

and CDC (who provided the isolates with Euro-American-labels), which the model

resolves in favor of classifying these isolates as Euro-American/X.

Reviewing the misclassified Indo-Oceanic labels that were classified as East-

African Indian, the mislabeled data either had missing MIRU data or had both

MIRU and spoligotype data that closely resembled East-African Indian isolates.

Given the fact that these labels were only classified at the top-level as Indo-Oceanic,

it is possible that these isolates are in fact mislabeled in the data set.

Another interesting discrepancy between the original data labels and the pre-

dicted labels is the fact that the M. mungi top-level and mid-level label is not used

at all in the predicted model. Given the very small number of the M. mungi isolates

in the database, it appears that the model ignored the top-level and mid-level M.

mungi labels entirely, and East-African Indian. Given more M. mungi data, the

model training process may not ignore the M. mungi isolates, and this misclassifi-

cation may not occur. Since the M. mungi data is so rare in the database, but the

classification of M. mungi as a separate lineage is strongly supported, an alternative

would be to artificially upweight the M. mungi isolates in the data set specifying a

higher number of repetitions for each isolate.
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This reveals another interesting consequence of the model design: since the

structure of the three-tier model allows for any top-level label to be a parent of any

mid-level label, and any mid-level label to be a parent of any sub-level label, it is

possible for a label that, in the original data set, to switch to another branch of

the hierarchy. For example, as can be seen in Figures 4.13 and 4.14, the M. mungi

sub-level classification label ended up moving through the hierarchy under Indo-

Oceanic/India. Similarly, the EAI7-BGD2 label ended up in the Euro-American/X

hierarchy (a side effect of the confusion discussed above). Obviously, the names of

these labels are no longer valid for their new location in the hierarchy; instead, they

indicate areas in which the model had a higher log-likelihood when an extra sub-

level classification exists at that location in the hierarchy. Thus, while the model

was trained with only six extra sub-level classification labels, if we include M. mungi

and EAI7-BGD2, eight new locations within the hierarchy were used.

One last point of discussion regarding the predictive model is the final dispo-

sition of the extra sub-level labels the model was provided. Examining Figures 4.13

and 4.14, the new labels (called ‘OtherSub1’,. . . ,‘OtherSub6’) extended the existing

label hierarchy as follows: two news sub-level labels were added to the East-African

Indian lineage, one sub-level label was added to the Euro-American/Haarlem lin-

eage, one sub-level label was added to the Euro-American/LAM lineage, and two

sub-level labels were added to the Euro-American/X lineage. Examining the spolig-

otype and MIRU prototypes for these new sub-level labels in Figures 4.13 and 4.14,

it appears that these new sublineage labels have definite distinct spoligotype and

MIRU patterns, and may provide new sub-level classifications which do not cur-

rently exist in the labeled data set. As discussed in Section 4.1.1, the inclusion of

MIRU in the model selection process indicates that more sublineages may exist than

previously identified using spoligotype-only models.
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Figure 4.11: Original Spoligotype Data for Sub-level Labels.
This figure shows the original data aggregated at the sub-level, dis-
playing the top-level, mid-level, and sub-level label lineages, the size
of each lineage in the original data, and the average spoligotype val-
ues. Data which does not possess a mid-level or sub-level label are
listed in this figure with the label of “Unlabeled”. Figure 4.12
shows the MIRU values for this data set (split across two
figures for readability).
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Figure 4.12: Original MIRU Data for Sub-level Labels.
This figure shows the average MIRU values for the same sub-level
labels as displayed in Figure 4.11 (split across two figures for read-
ability). The blank MIRU values (for EAI2, M. Mungi and Pini2)
indicate sub-level classes for which no MIRU data originally existed.
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Figure 4.13: Predicted Spoligotype Model for Sub-level Labels, Final
Three-Tier Model.
This figure shows the sub-level labels as predicted by the model, with
probability, predicted class size (as applied to data set), and spolig-
type prototypes. The prediction model provides a full label set for
every isolate, and thus has no unlabeled data. This figure can be
compared to Figure 4.11 to examine differences between the data as
originally labeled and as labeled by the model.
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Figure 4.14: Predicted MIRU Model for Sub-level Labels, Final Three-
Tier Model.
This figure shows the average MIRU values for the same predicted
sub-level labels as displayed in Figure 4.13 (split across two figures for
readability). This figure can be compared to Figure 4.12 to examine
differences between the data as originally labeled and as labeled by
the model.
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Figure 4.15: Confusion Matrix for Original and Predicted Top-Level La-
bels, Final Three-Tier Model.
Shows a comparison of the original data set and the data set at the
top-most level, as predicted by the model by displaying the number
of correctly (in bold) and incorrectly labeled isolates. For each orig-
inal top-level label, the total count, number of correctly-predicted
isolates (true positives), and the model sensitivity (number of true
positives divided by the count per original label) are displayed at
the bottom. For each predicted label, the total count, number of
correctly-predicated isolates, and model precision (number of true
positives divided by the count per predicted label) are displayed at
the right. The totals in the bottom right square represent (from first
to last) the total count in the database, the number of correctly-
predicted labels, and accuracy of the model at the top-most level.
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CHAPTER 5

Conclusion and Future Work

This thesis presents a new probabilistic model that predicts all three levels of the

MTBC lineage hierarchy based on spoligotyping and MIRU data simultaneously.

This model handles MTBC isolates with spoligotypes and MIRU as well as with

spoligotypes only, and handles partially-labeled data, which are missing one or more

of the top-level, mid-level, or sub-level labels due to heterogeneous data sources.

This work uses a semi-supervised method for lineage prediction which builds upon

previous unsupervised and supervised methods for single-level lineage prediction.

The results of this thesis confirm several well-established and well-studied sub-

lineages as well as identify several possible new sublineages which may require ad-

ditional study. Additionally, some possibly inconsistent lineage labels have been

identified, specifically the EAI7-BGD2 sublineage (as identified by Institut Pas-

teur), which is considered to be a Euro-American/X sublineage after grouping it

with similar isolates provided by CDC.

Certain assumptions and limitations of the three-tier model presented in this

work could be improved upon in future efforts. The failure to properly classify the

M. Mungi lineage can be rectified by upsampling the M. mungi isolates to increase

their sample size, since this lineage is very rare. The independence assumption for

spoligotype spacers does not hold true in real-world data, but nonetheless has been

shown to provide effective classification results. However, more complex models

for spoligotype spacers may provide even better classification results. Additionally,

modeling MIRU data as a categorical distribution provides simplicity and ease of

computation, but as MIRU values are ordinal in nature, the categorical distribution

ignores the “closeness” of two values. In some cases, such at MIRU24, this proves

useful, as the difference between a MIRU24 value of 1 and a MIRU24 value of 2

is an important predictor. However, in other cases, modeling MIRU values as a

categorical distribution may be introducing unnecessary separation between two

otherwise closely related isolates. A model which considers the ordinality of MIRU
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values may prove to be a better classifier than the one presented in this thesis.

Future work to be conducted in this study includes resolving the EAI7-BGD2

issue through a literature search and consultation with Institut Pasteur and CDC.

The model will be retrained based on successful resolution of problem classifying

M. mungi isolates through upsampling, and further evaluation of this model will

be done on an additional data set provided by Nalin Rastogi and David Couvin to

generate additional out-of-sample predictions.

Following the precedent set by SPOTCLUST [11] and TB-Lineage [13], once

completed, the final model will be made available through the TB-Insight project

website (http://tbinsight.cs.rpi.edu/) and SITVITWEB, for the benefit of TB

public health workers and MTBC resarchers worldwide.
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APPENDIX A

EM Algorithm Update Derivations

This appendix describes the derivation of the expectation-maximization algorithm

update steps.

A.1 Single-tier Sublineage Model Updates

This section describes in detail the derivations required for the expectation-

maximization algorithm as applied to the single-tier model without hidden parrents,

originally described in Section 3.1.1.

A.1.1 Maximization for αĵ

Optimization with respect to a particular αĵ is constrained by
∑k

j=1 αj = 1.

Thus, the optimality condition with respect to the parameter αĵ of Equation 3.1 is

∂

∂αĵ

[
n∑
i=1

k∑
j=1

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

log {p(si,mi | Θ)}+ λ

(
k∑
j=1

αj − 1

)]
= 0

Noting that

p(si,mi | Θ) = p(cj)p(si | cj)p(mi | cj) = αjp(si | cj)p(mi | cj) ,

we continue the above computation as

∂

∂αĵ

[
n∑
i=1

k∑
j=1

(
EZ
[
zij
∣∣ si,mi,Θ

(t)
]

log {αj}+

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

log {p(si | cj)p(mi | cj)}
)

+ λ

(
k∑
j=1

αj − 1

)]
= 0 ,

62



63

which simplifies as ∑n
i=1EZ

[
ziĵ
∣∣ si,mi,Θ

(t)
]

αĵ
+ λ = 0

or equivalently

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
]

+ αĵλ = 0 .

To compute the Lagrange multiplier λ, we sum up over all ∂/∂αĵ:

k∑
j=1

n∑
i=1

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

+
k∑
j=1

αjλ = 0

λ = −
k∑
j=1

n∑
i=1

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

λ = −n

where the calculation follows as we note that
∑k

j=1 αj = 1 (by constraint) and for a

particular i,

k∑
j=1

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

=
k∑
j=1

p(cj | si,mi,Θ
(t)) = 1 .

Thus,

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
]
− αĵn = 0

which gives us our αĵ estimate update

αĵ =

∑n
i=1EZ

[
ziĵ
∣∣ si,mi,Θ

(t)
]

n
.
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A.1.2 Maximization for σĵd̂

The optimality condition of Equation 3.1 with respect to the parameter σĵd̂ is

∂

∂σĵd̂

[
n∑
i=1

k∑
j=1

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

log {p(si,mi | Θ)}

]
= 0

Noting that

log{p(si,mi | Θ)} = log{p(cj)p(si | cj)p(mi | cj)}

= log{p(cj)}+ log{p(si | cj)}+ log{p(mi | cj)}

and that log{p(si | cj)} term is the only term with contains the parameter σĵd̂, we

can simplify this computation as

∂

∂σĵd̂

[
n∑
i=1

k∑
j=1

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

log{p(si | cj)}

]
= 0

∂

∂σĵd̂

[
n∑
i=1

k∑
j=1

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

log

{
DS∏
d=1

σsidjd (1− σjd)1−sid
}]

= 0

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
] ∂

∂σĵd̂

[
log
{
σ
sid̂
ĵd̂

(1− σĵd̂)
1−sid̂

}]
= 0 .

Computing the partial derivative we find

∂

∂σĵd̂

[
log
{
σ
sid̂
ĵd̂

(1− σĵd̂)
1−sid̂

}]
=

∂
∂σĵd̂

[
σ
sid̂
ĵd̂

(1− σĵd̂)1−sid̂
]

σ
sid̂
ĵd̂

(1− σĵd̂)1−sid̂

=
sid̂σ

sid̂−1
ĵd̂

(1− σĵd̂)1−sid̂ − (1− sid̂)(1− σĵd̂)−sid̂σ
sid̂
ĵd̂

σ
sid̂
ĵd̂

(1− σĵd̂)1−sid̂

=
sid̂
σĵd̂
−

(1− sid̂)
(1− σĵd̂)

=
sid̂ − σĵd̂

σĵd̂(1− σĵd̂)
.
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Thus,

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
] sid̂ − σĵd̂
σĵd̂(1− σĵd̂)

= 0

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
] (
sid̂ − σĵd̂

)
= 0

which gives the σĵd̂ estimate update

σĵd̂ =

∑n
i=1EZ

[
ziĵ
∣∣ si,mi,Θ

(t)
]
sid̂∑n

i=1EZ
[
ziĵ | si,mi,Θ(t)

] .

A.1.3 Maximization for µĵd̂r̂

Optimization with respect to a particular µĵd̂r̂ is constrained by
∑R

r=1 µĵd̂r = 1.

Using the Lagrange multiplier λĵd̂, the optimality condition of Equation 3.1 with

respect to this parameter is

∂

∂µĵd̂r̂

[
n∑
i=1

k∑
j=1

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

log {p(si,mi | Θ)}+ λĵd̂

(
R∑
r=1

µĵd̂r − 1

)]
= 0

which simplifies to

∂

∂µĵd̂r̂

[
n∑
i=1

k∑
j=1

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

log{p(mi | cj)}+ λĵd̂

R∑
r=1

µĵd̂r

]
= 0

∂

∂µĵd̂r̂

[
n∑
i=1

k∑
j=1

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

log

{
DM∏
d=1

R∏
r=1

µ
[mid=qr]
jdr

}
+ λĵd̂

R∑
r=1

µĵd̂r

]
= 0

∂

∂µĵd̂r̂

[
n∑
i=1

k∑
j=1

EZ
[
zij
∣∣ si,mi,Θ

(t)
] DM∑
d=1

R∑
r=1

log
{
µ
[mid=qr]
jdr

}
+ λĵd̂

R∑
r=1

µĵd̂r

]
= 0

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
] ∂

∂µĵd̂r̂

[
log
{
µ
[mid̂==qr̂]

ĵd̂r̂

}]
+ λĵd̂ = 0 .
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Performing the computation of the partial derivative, we find

∂

∂µĵd̂r̂

[
log
{
µ
[mid̂=qr̂]

ĵd̂r̂

}]
=

∂
∂µĵd̂r̂

[
µ
[mid̂=qr̂]

ĵd̂r̂

]
µ
[mid̂=qr̂]

ĵd̂r̂

where we note that if mid̂ = qr̂ then

∂

∂µĵd̂r̂

[
µ
[mid̂=qr̂]

ĵd̂r̂

]
=

∂

∂µĵd̂r̂

[
µĵd̂r̂

]
= 1

and if mid̂ 6= qr̂ then

∂

∂µĵd̂r̂

[
µ
[mid̂=qr̂]

ĵd̂r̂

]
=

∂

∂µĵd̂r̂
[1] = 0 .

Thus,

∂

∂µĵd̂r̂

[
µ
[mid̂=qr̂]

ĵd̂r̂

]
= [mid̂ = qr̂]

and therefore

∂

∂µĵd̂r̂

[
log
{
µ
[mid̂=qr̂]

ĵd̂r̂

}]
=

[mid̂ = qr̂]

µ
[mid̂=qr̂]

ĵd̂r̂

.

Continuing the computation, we find

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
] ∂

∂µĵd̂r̂

[
log
{
µ
[mid̂=qr̂]

ĵd̂r̂

}]
+ λĵd̂ = 0

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
] [mid̂ = qr̂]

µ
[mid̂=qr̂]

ĵd̂r̂

+ λĵd̂ = 0

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
]

[mid̂ = qr̂] + λĵd̂µ
[mid̂=qr̂]

ĵd̂r̂
= 0 .
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To find λĵd̂, we sum over all r

R∑
r=1

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
]

[mid̂ = qr] +
R∑
r=1

λĵd̂µ
[mid̂=qr]

jd̂r
= 0

R∑
r=1

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
]

[mid̂ = qr] + λĵd̂ = 0

which gives us

λĵd̂ = −
R∑
r=1

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
]

[mid̂ = qr]

So, we find the parameter estimate for µĵd̂r̂ is

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
]

[mid̂ = qr̂]

−
R∑
r=1

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
]

[mid̂ = qr]µ
[mid̂=qr̂]

ĵd̂r̂
= 0

and thus

µĵd̂r̂ =

∑n
i=1EZ

[
ziĵ
∣∣ si,mi,Θ

(t)
]∑R

r=1

∑n
i=1EZ

[
ziĵ | si,mi,Θ(t)

]
[mid̂ = qr]

.

A.2 Single-tier Hidden-Parent Sublineage Model Updates

This section describes in detail the derivations required for the expectation-

maximization algorithm as applied to the single-tier model with hidden parents,

originally described in Section 3.1.2.

A.2.1 Maximization for αĵ

The of the maximization of αĵ proceeds as in Section A.1.1, resulting in

αĵ =

∑n
i=1EZ

[
ziĵ
∣∣ si,mi,Θ

(t)
]

n
.



68

A.2.2 Maximization for σĵd̂

The optimality condition of Equation 3.1 with respect to the parameter σĵd̂ is

∂

∂σĵd̂

[
n∑
i=1

k∑
j=1

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

log {p(si,mi | Θ)}

]
= 0,

which simplifies to

∂

∂σĵd̂

[
n∑
i=1

k∑
j=1

EZ
[
zij
∣∣ si,mi,Θ

(t)
]

log{p(si | cj)}

]
= 0

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
] ∂

∂σĵd̂
[log {p(si | cj)}] = 0 .

Computing the partial derivative we find

∂

∂σĵd̂

[
log
{
p(sid̂ | cĵ)

}]
=

∂

∂σĵd̂

[
log
{(
η11σĵd̂ + η10(1− σĵd̂)

)sid̂
(
η01σĵd̂ + η00(1− σĵd̂)

)1−sid̂}]
=

sid̂ (η11 − η10)
η11σĵd̂ + η10(1− σĵd̂)

+
(1− sid̂) (η01 − η00)
η01σĵd̂ + η00(1− σĵd̂)

=
sid̂ (η11 − η10)

η11σĵd̂ + η10(1− σĵd̂)
+

(1− sid̂) (η11 − η10)
η10 − 1 + σĵd̂(η11 − η10)

=
(η11 − η10)

(
η10 − sid̂ + σĵd̂(η11 − η10)

)
(η11σĵd̂ + η10(1− σĵd̂))(η10 − 1 + σĵd̂(η11 − η10))

Thus,

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
] (η11 − η10)

(
η10 − sid̂ + σĵd̂(η11 − η10)

)
(η11σĵd̂ + η10(1− σĵd̂))(η10 − 1 + σĵd̂(η11 − η10))

= 0

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
]

(η11 − η10)
(
η10 − sid̂ + σĵd̂(η11 − η10)

)
= 0
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Solving for σĵd̂, we compute

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
]
σĵd̂(η11 − η10)

2 =

n∑
i=1

EZ
[
ziĵ
∣∣ si,mi,Θ

(t)
]

(η11 − η10) (sid̂ − η10)

and get the σĵd̂ estimate update

σĵd̂ =

∑n
i=1EZ

[
ziĵ
∣∣ si,mi,Θ

(t)
]

(sid̂ − η10)
(η11 − η10)

∑n
i=1EZ

[
ziĵ | si,mi,Θ(t)

]
A.2.3 Maximization for µĵd̂r̂

The parameter update for µĵd̂r̂ proceeds as in Section A.1.3, resulting in

µĵd̂r̂ =

∑n
i=1EZ

[
ziĵ
∣∣ si,mi,Θ

(t)
]∑R

r=1

∑n
i=1EZ

[
ziĵ | si,mi,Θ(t)

]
[mid̂ = qr]

.

A.3 Multi-tier Hidden-Parent Model Updates

This section describes the derivations required for the EM algorithm as applied

to the multi-tier model with hidden parents, originally described in Section 3.1.3.

A.3.1 Maximization for αû

Optimization with respect to a particular αĵ is constrained by
∑kA

u=1 αu = 1.

Thus we have the optimality condition of Equation 3.3 with respect to the parameter

αû:

∂

∂αû


n∑
i=1

∑
u=1,...,kA
v=1,...,kB
j=1,...,kC

EW
[
xiuyivzij | si,mi,Θ

(t)
]

log {p(si,mi | Θ)}

+λ

(
kA∑
u=1

αu − 1

)]
= 0 .
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Breaking the probability p(si,mi | Θ) up into

p(si,mi | Θ) = p(au)p(bv | au)p(cj | bv)p(si | cj)p(mi | cj)

and recalling that p(au) = αu, we continue the computation of the optimality con-

dition:

n∑
i=1

∑
v=1,...,kB
j=1,...,kC

EW
[
xiûyivzij

∣∣ si,mi,Θ
(t)
] ∂

∂αû
[log {αû}] + λ = 0

∑n
i=1

∑
v=1,...,kB
j=1,...,kC

EW
[
xiûyivzij

∣∣ si,mi,Θ
(t)
]

αû
+ λ = 0

n∑
i=1

∑
v=1,...,kB
j=1,...,kC

EW
[
xiûyivzij

∣∣ si,mi,Θ
(t)
]

+ αûλ = 0

To find λ, we sum up over all ∂/∂αû:

kA∑
u=1

n∑
i=1

∑
v=1,...,kB
j=1,...,kC

EW
[
xiuyivzij

∣∣ si,mi,Θ
(t)
]

+

kA∑
u=1

αuλ = 0

which gives the value of λ as

λ = −
n∑
i=1

∑
u=1,...,kA
v=1,...,kB
j=1,...,kC

EW
[
xiuyivzij

∣∣ si,mi,Θ
(t)
]

λ = −n

where the calculations follow as we note that
∑k

j=1 αj = 1 (by constraint) and for

particular i,

∑
u=1,...,kA
v=1,...,kB
j=1,...,kC

EW
[
xiuyivzij

∣∣ si,mi,Θ
(t)
]

=
∑

u=1,...,kA
v=1,...,kB
j=1,...,kC

p(au, bv, cj | si,mi,Θ
(t)) = 1 .
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Thus,

n∑
i=1

∑
v=1,...,kB
j=1,...,kC

EW
[
xiûyivzij

∣∣ si,mi,Θ
(t)
]
− αûn = 0

and our final αû parameter maximization update is

αû =

∑n
i=1

∑
v=1,...,kB
j=1,...,kC

EW
[
xiûyivzij

∣∣ si,mi,Θ
(t)
]

n
.

A.3.2 Maximization for βv̂û

Optimization with respect to a particular βv̂û is constrained by
∑kB

v=1 βvû = 1

Thus we have the optimality condition of Equation 3.3 with respect to the parameter

βv̂û:

∂

∂βv̂û


n∑
i=1

∑
u=1,...,kA
v=1,...,kB
j=1,...,kC

EW
[
xiuyivzij

∣∣ si,mi,Θ
(t)
]

log {p(si,mi | Θ)}

+ λû

(
kB∑
v=1

βvû − 1

) = 0

or equivalently

n∑
i=1

kC∑
j=1

EW
[
xiûyiv̂zij

∣∣ si,mi,Θ
(t)
] ∂

∂βv̂û
[log {p(bv | au)}] + λû = 0

∑n
i=1

∑kC
j=1EW

[
xiûyiv̂zij

∣∣ si,mi,Θ
(t)
]

βv̂û
+ λû = 0

n∑
i=1

kC∑
j=1

EW
[
xiûyiv̂zij

∣∣ si,mi,Θ
(t)
]

+ βv̂ûλû = 0
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To find λû, we sum up over all v:

n∑
i=1

∑
v=1,...,kB
j=1,...,kC

EW
[
xiûyivzij

∣∣ si,mi,Θ
(t)
]

+

kB∑
v=1

βvûλû = 0

which results in the λû

λû = −
n∑
i=1

∑
v=1,...,kB
j=1,...,kC

EW
[
xiûyivzij

∣∣ si,mi,Θ
(t)
]

where the calculations follow as we note that
∑kB

v βvu = 1 (by constraint).

Thus,

n∑
i=1

kC∑
j=1

EW
[
xiûyiv̂zij

∣∣ si,mi,Θ
(t)
]

−
n∑
i=1

∑
v=1,...,kB
j=1,...,kC

EW
[
xiûyivzij

∣∣ si,mi,Θ
(t)
]
βv̂û = 0

and we have the resulting βv̂û parameter update

βv̂û =

∑n
i=1

∑kC
j=1EW

[
xiûyiv̂zij

∣∣ si,mi,Θ
(t)
]∑n

i=1

∑
v=1,...,kB
j=1,...,kC

EW [xiûyivzij | si,mi,Θ(t) ]
.

A.3.3 Maximization for γĵv̂

Maximization for a particular γĵv̂ proceeds exactly as the βv̂û case, giving us

γĵv̂ =

∑n
i=1

∑kA
u=1EW

[
xiuyiv̂ziĵ

∣∣ si,mi,Θ
(t)
]∑n

i=1

∑
u=1,...,kA
j=1,...,kC

EW [xiuyiv̂zij | si,mi,Θ(t) ]
.

A.3.4 Maximization for σĵd̂

Maximization for a particular σĵd̂ occurs similarly to the way described in

Section A.2.2, with the following result:
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σĵd̂ =

∑n
i=1

∑
u=1,...,kA
v=1,...,kB

EW
[
xiuyivziĵ

∣∣ si,mi,Θ
(t)
]

(sid̂ − η10)

(η11 − η10)
∑n

i=1

∑
u=1,...,kA
v=1,...,kB

EW
[
xiuyivziĵ | si,mi,Θ(t)

] .
A.3.5 Maximization for µĵd̂r̂

Maximization for a particular µĵd̂r̂ occurs similarly to the way described in

Section A.1.3, with the following result:

µĵd̂r̂ =

∑n
i=1

∑
u=1,...,kA
v=1,...,kB

EW
[
xiuyivziĵ

∣∣ si,mi,Θ
(t)
]

∑R
r=1

∑
u=1,...,kA
v=1,...,kB

∑n
i=1EZ

[
xiuyivziĵ | si,mi,Θ(t)

]
[mid̂ = qr]

.


