
NONCONVEX NONSMOOTH OPTIMIZATION
FOR BIOINFORMATICS

By

Amina Shabbeer

A Dissertation Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: COMPUTER SCIENCE

Examining Committee:

Kristin P. Bennett, Dissertation Adviser

Bülent Yener, Member

John Mitchell, Member

Malik Magdon-Ismail, Member

Rensselaer Polytechnic Institute
Troy, New York

August 2013
(For Graduation December 2013)

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3613308

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3613308

� Copyright 2013

by

Amina Shabbeer

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGMENT . xiii

ABSTRACT . xv

1. Computational Tools for TB Epidemiology 1

1.1 Molecular Epidemiology of TB . 3

1.2 DNA Fingerprinting Methods . 4

1.2.1 IS6110 Restriction Fragment Length Polymorphism (RFLP) . 4

1.2.2 Spoligotyping . 4

1.2.3 MIRU-VNTR Analysis . 5

1.2.4 Single Nucleotide Polymorphisms 5

1.2.5 Long Sequence Polymorphisms 6

1.3 TB-Insight: TB-Lineage . 6

1.3.1 TB-Lineage: TB-Rules . 7

1.3.1.1 Spoligotype Signatures 7

1.3.1.2 Naive Bayes Classifer to predict Modern or Ancestral 11

1.3.1.3 TB-Insight: Conformal Bayes Net 12

1.4 Spoligoforests: Validation of Lineages 15

2. Classification and Visualization Tools for TB 17

2.1 Classification Tools for TB . 18

2.2 MIRU-VNTRplus . 18

2.3 TB-Insight: SPOTCLUST . 22

2.4 TB-Insight: CBN . 23

2.5 Visualization Tools for TB . 25

2.6 Spoligoforests . 25

2.7 Host-Pathogen Treemaps . 26

iii

3. Graph Visualization Background: Proximity Preservation and Crossing
Minimization . 29

3.1 Minimizing Edge Crossings . 29

3.1.1 Exact Crossing Minimization 30

3.1.2 The Planarization Approach 32

3.1.3 Planar Embedding . 32

3.2 Proximity Preservation . 33

3.2.1 Multidimensional Scaling . 33

3.2.1.1 Stress Majorization 33

3.2.2 Other Graph Embedding Methods 34

3.2.2.1 Force-directed Methods 35

3.2.2.2 Spectral Techniques 36

3.2.2.3 Locality Methods . 36

4. Penalty Methods for Proximity Preservation and Crossing Minimization in
Graph Visualizations . 38

4.1 Introduction . 39

4.2 Continuous Edge-Crossing Constraints 42

4.3 Stress Majorization with Edge-Crossing Penalization 44

4.4 Results and Interpretation . 47

4.4.1 Embedding of Spoligoforests with Non-Euclidean Distances . . 47

4.4.2 Randomly Generated Planar Graphs 48

4.5 Discussion . 51

5. Alternating Directions of Multiplier Methods for Visual Analytics 54

5.1 ADMM Framework . 54

5.2 ADMM for Constrained Graph Embedding 58

5.2.1 ADMM for Finding Separating Planes 58

5.2.2 ADMM for Proximity Preservation and Overlap Minimization
in Graph Visualizations . 60

5.3 Results and Interpretations . 63

5.4 Discussion . 68

6. Analysis . 70

6.1 Notation and Definitions . 70

6.2 Optimality Conditions . 72

iv

6.3 Alternating Algorithm for Nonconvex Nonsmooth
Optimization Problems . 76

6.4 Discussion: Alternating Algorithms MAA andMAA+ for Constrained
MDS . 82

7. Variations and Extensions . 87

7.1 Closed-form solutions . 87

7.1.1 No Intersection Case . 89

7.1.2 Intersection Case . 91

7.2 Intersections between Arbitrary Shapes in Graph Drawings 92

7.2.1 Minimizing Overlaps in Host-pathogen Maps 94

7.2.2 Node-Edge Overlaps . 98

7.2.3 Convex Envelope around Subgraphs 100

7.3 Tool for Spoligoforest Generation . 101

8. Conclusions . 105

REFERENCES . 109

APPENDICES

A. APPENDIX . 118

A.1 Graphs and Spoligoforests Generated by MAA 118

A.2 Spoligoforests Generated by MAA+ 122

v

LIST OF TABLES

1.1 Mapping of lineage names from conventions in prior literature. 8

1.2 Summary description of the datasets used in the development of the
online tool TB-Lineage. 13

1.3 Comparison of f-measure of classification in the datasets used in this
study. 13

4.1 Comparison of the stress and number of crossings in embeddings gen-
erated by the proposed approach MAA that optimizes with respect to
proximity preservation as well as edge-crossings with (i) MDS using
Stress Majorization (as implemented in Neato) that minimizes proxim-
ity stress, but not edge-crossings(ii) Planar Embeddings (drawn using
Twopi for spoligoforests, original embeddings for random graphs) that
minimize edge crossings but not stress (iii) Laplacian Eigenmaps that
minimize an alternative proximity preservation objective only. All stress
results are normalized so that the NEATO stress is 1. Results shown
for three MTBC spoligoforest datasets. 48

5.1 Metrics for spoligoforests generated with MAA+, MDS, Twopi and
Laplacian Eigenmaps. 65

5.2 Comparison of average stress and crossings for MAA+, MDS, Spring
and Orthogonal Embedding for 5 sets of 20 randomly generated graphs. 65

5.3 Comparison of average stress and crossings for MAA+, MDS, Spring
Embedding and Laplacian Eigenmaps for 4 sets of ROMA graphs, each
set ranging in size from 60 to 100 graphs. 67

vi

LIST OF FIGURES

1.1 Rules to classify M. tuberculosis strains into major lineages based on
the presence or absence of spacer sequences and the number of repeats
observed at the MIRU24 locus. The rules are applied in the order
specified. The label assigned to a strain corresponds to the first rule
that meeting criteriais satisfied. 10

1.2 Spoligoforest representation of genetic diversity of MTBC strains in 37,061

isolates collected from TB patients in the United States between 2004-2008.

Each lineage corresponds to a unique color as shown in the legend. Each node

represents a cluster of strains of the same spoligotype but different MIRU

types, and the size represents the number of isolates on a log scale. The

lineages are highly cohesive with few edges between lineages. 16

2.1 NJ tree in radial format created from the NYS dataset using the tree-
based identification tool on MIRUVNTRplus.org. Lineage labels were
assigned using similarity search, followed by tree-based analysis. The
strains were assigned colors based on their lineage using the options
available on the Calculate Tree tool. The scale of the genetic distance
and the colors associated with each lineage are indicated in the legend. . 21

2.2 Most probable family using RIM and SpolDB3 model of SPOTCLUST.
The probability alongside the lineage prediction is a measure of the
confidence of the prediction. 23

2.3 Spoligoforests of 268 distinct spoligotype strains from the NYS dataset
of 674 isolates generated using the visualization tool of TB-Lineage.
Each lineage corresponds to a unique color as shown in the legend.
Each node represents a cluster of strains of the same spoligotype and
the node size represents the number of isolates on a log scale. Each edge
represents a mutation from a parent spoligotype sequence to the child
sequence by the loss of one or more adjacent spacers i.e. a contiguous
deletion. Note lineages are highly cohesive with few edges between
lineages. This indicates the high degree of genetic relatedness between
strains within a lineage. 27

vii

2.4 Host-pathogen maps of patients from the NYS dataset infected with
strains of the Indo-Oceanic lineage that visualize associations between
the genotype and host characteristics. Strains are represented by triples
of spoligotype, MIRU and RFLP patterns and are depicted by nested
boxes. Patients are depicted as nodes colored by region of birth. The
visualization shows the predominance of strains of the Indo-Oceanic
lineage in patients from South-East Asia and the Indian subcontinent.
Clusters of cases with identical associated genotype appear in bigger
boxes, thus bringing attention to possible outbreaks. 28

3.1 In each iteration, we minimize the majorization function g(x, z) that is
an upper bound on the original function f(x) and touches it at a single
point. 35

4.1 Embeddings of spoligoforests of LAM (Latin-American-Mediterranean)
sublineages. Graph (c) is a planar embedding generated using Twopi,
the radial layout is visually appealing, but genetic distances between
strains are not faithfully reflected. Graph (d) generated by spectral de-
composition of the weighted Laplacian preserves local structure but has
edge-crossings. Graph (b), that optimizes the MDS objective and gener-
ated using Neato, preserves proximity relations but has edge-crossings.
In graph (a), the proposed approach eliminates all edge crossings with
little change in the overall stress. Note how in graph (a), the radial
structure emerges naturally when both distances and the graph struc-
ture are considered. 41

4.2 In (a) Edge A from a to c and edge B from b to d do not cross. Any
line between xu− γ = 1 and xu− γ = −1 strictly separates the edges.
Using a soft margin, the plane in (b) xu − γ = 0 separates the plane
into half spaces that should contain each edge. 44

4.3 Embeddings for randomly generated graph in R
7 with 50 nodes and 80

edges using (a) Stress majorization (stress=131.8, number of crossings=369)
and (b) MAA (stress=272.1, number of crossings=0). The original pla-
nar embedding had stress= 352.5. 49

4.4 Comparison of (a) stress and (b) number of crossings in embeddings for
randomly generated graphs with 50-120 nodes and 40-160 edges gener-
ated using 6 different algorithms MAA, Neato (Stress Majorization),
Lapacian Eigenmaps, Spring, Orthogonal, Fast Multipole Multilevel
Method (FM3). 50

viii

4.5 Plot of final edge-crossings vs initial edge crossings in MAA embeddings
for 160 randomly generated graphs with 50 nodes and 80 edges. The
size and color of the nodes represents the ratio of final stress to the
stress majorization solution as found by Neato. MAA can produce
embeddings with a significant reduction in the number of crossings with
small increase in stress. 51

5.1 Spoligoforest for all sublineages predicted to belong to the Euro-American
X lineage. Layout generated using (a) MAA+ (b)MDS (c) GraphViz
Twopi (d) Laplacian Eigenmaps. MAA+ improves on MDS in number
of crossings with marginal increase in stress. 66

5.2 Spoligoforest for all sublineages CAS1-Delhi, CAS1-KILI and CAS2 of
the East-african Indian lineage. Layout generated using (a) MAA+
(b)MDS (c) GraphViz Twopi (d) Laplacian Eigenmaps. MAA+ im-
proves on MDS in number of crossings with marginal increase in stress. 67

5.3 Comparison of spoligoforest layouts by MAA+, MDS, Spring and Or-
thogonal Embedding for randomly generated graph with 120 nodes and
140 edges. MAA+ reduces number of crossings to 431 from 1113 in
MDS layout, while stress increases to 1.4 times that of MDS solution.
Stress of Spring and Orthogonal Embeddings are 5.9 and 5.4 times the
MDS layout. 68

7.1 Various possible closed form solutions for finding separating line be-
tween edges when they are separable. Edge A is denoted by red nodes,
and edge B by blue nodes. The separating line xu = β is given by the
blue line, while corresponding line x′u = β+1 is in red, and x′u = β−1
in green. (i) Both equations of edge A and B can be used, separat-
ing line based on equation of edge A, (ii) Only a line parallel to B
may be used. (iii) Separating line midway between two nearest points.
Minimum separation requirement not satisfied even though there is no
crossing, will result in non-zero penalty. 91

7.2 Various possible closed form solutions for finding separating line be-
tween edges when they are separable. Edge A is denoted by red nodes,
and edge B by blue nodes. The separating line xu = β is given by the
blue line, while corresponding line x′u = β+1 is in red, and x′u = β−1
in green. (i) Intercept set such that B satisfies constraint exactly, non-
zero penalty for only single node of edge A (ii) Intercept set such that
3 nodes have non-zero penalties, although penalty of each node is rela-
tively small. Requires adjustment of three points to satisfy constraint. . 93

ix

7.3 Condition for no-overlap: (a) Objects A and B do not overlap. Any line
between xu−γ = 1 and xu−γ = −1 strictly separates the edges. Using
a soft margin, the plane in (b) xu− γ = 0 separates the plane into half
spaces that should contain each object. (c) Nodes that are nonconvex
sets can be decomposed into convex parts if prior knowledge about the
shape of the node is known. 94

7.4 Host-pathogen maps of patients from New York State infected with
strains of the Indo-Oceanic lineage that visualize associations between
the genotype and host characteristics. Strains are represented by triples
of spoligotype, MIRU and RFLP patterns and are depicted by nested
boxes. Patients are depicted as nodes colored by region of birth. The
visualization shows the predominance of strains of the Indo-Oceanic
lineage in patients from South-East Asia and the Indian subcontinent.
Clusters of cases with identical associated genotype appear in bigger
boxes, thus bringing attention to possible outbreaks. 95

7.5 Illustration of the concept of eliminating overlaps between nested boxes,
and boxes and labels in host-pathogen maps. 96

7.6 Host-pathogen map for Euro-American strains (a) before and (b) after
node overlap removal. 98

7.7 Host-pathogen map for East-Asian strains (a) before and (b) after node
overlap removal. 99

7.8 Illustration of the concept of eliminating node-node and node-edge inter-
sections resulting from nodes of arbitrary shapes and sizes in a spoligo-
forest. l1 is the separating plane that defines the halfspaces in which
the node and edge must lie, while l2 defines the halfspaces that should
contain the two nodes. 100

7.9 Enforcing minimum separation between nodes and edges results in a
clear representation of both nodes and edges, allowing larger nodes to
be used, with marginal increase in stress. (a) Initial layout, stress=0.103
and (b) Final layout, stress=0.112. 101

7.10 Spoligoforest layouts computed using Graphviz Twopi modified so dis-
tance between components reflects inter-lineage distance. (a) Original
layout by Twopi (b) Convex hull of each component computed, MDS us-
ing inter-lineage distances results in overlapping components. (c) Over-
laps between convex shapes removed while keeping stress low. 102

7.11 Spoligoforest generated by MAA+ using the TB-Vis spoligoforest tool
for M. africanum, M. bovis and EuroAm-African lineages. 104

x

A.1 Embeddings of spoligoforests of Haarlem, X, and LAM sublineages. Graph

(b), that optimizes the MDS objective and generated using Neato, preserves

proximity relations but has edge-crossings. In graph (a), the proposed ap-

proach eliminates all edge crossings with little change in the overall stress.

. 118

A.2 Embeddings of spoligoforests of LAM (Latin-American-Mediterranean)
sublineages using (a)MAA, (b)Neato, (c)Twopi and (d) Laplacian Eigen-
maps. The proposed method, MAA, eliminates all edge crossings and
shows the most genetically relevant arrangements within the sublineages.119

A.3 Embeddings of spoligoforests ofM. africanum sublineages. TheM. africanum

lineage is divided into two distinct sublineages. However, the distinction be-

tween the two sublineage is not visible in graph (c) produced using the radial

graph drawing algorithm Twopi. Graph (b), drawn using Neato tool with

stress majorization, clearly shows the separation, but is difficult to under-

stand because of edge crossings. Graph (d), drawn using Laplacian eigenmaps

preserves proximity, but the edge-crossings are not eliminated. Graph (a),

drawn using the proposed approach eliminates all edge crossings with little

change in the overall stress, while preserving proximity between genetically

related strains. 120

A.4 Embeddings of spoligoforests of 7 SpolDB4 sublineages. Notice that there

are many connected components in the graph. Graph (b), drwan using Neato

with stress majorization preserves proximity, but otroduces edge crossings.

Graph (c), drawn using radial layout implemented in Graphviz Twopi tool,

eliminates edge crossings, but the proximity of genetically related strains be-

longing to different connected components is not preserved. In graph (d),

Laplacian Eigenmap embedding based on weighted Laplacian groups geneti-

cally related strainsclosely, but there are edge crossings which makes it harder

to distinguish the nodes. In graph (a), the proposed approach eliminates all

edge crossings with little change in the overall stress. 121

A.5 Embeddings for randomly generated graph in R
7 with 50 nodes and 40 edges

using (a) Stress majorization and (b) MAA. Embeddings for randomly gen-

erated graph in R
7 with 50 nodes and 40 edges using (c) Stress majorization

and (d) MAA. Embeddings for randomly generated graph in R
7 with 50

nodes and 40 edges using (e) Stress majorization and (f) MAA. 122

A.6 Embeddings for randomly generated graph in R
7 with 50 nodes and 40

edges using (a) Stress majorization and (b) MAA. 123

A.7 Spoligoforest for all sublineages BOV 1, BOV 2 and BOV 3 of M. bovis.
Layout generated using (a) MAA+ (b)MDS (c) GraphViz Twopi (d)
Laplacian Eigenmaps. MAA+ improves on MDS in number of crossings
with marginal increase in stress. 124

xi

A.8 Spoligoforest for all sublineages predicted to belong to the Euro-American
Haarlem lineage. Layout generated using (a) MAA+ (b)MDS (c) GraphViz
Twopi (d) Laplacian Eigenmaps. MAA+ improves on MDS in number
of crossings with marginal increase in stress. 125

A.9 Spoligoforest for all sublineages predicted to belong to the Euro-American
LAM lineage. Layout generated using (a) MAA+ (b)MDS (c) GraphViz
Twopi (d) Laplacian Eigenmaps. MAA+ improves on MDS in number
of crossings with marginal increase in stress. 126

xii

ACKNOWLEDGMENT

I would like to thank my advisor Prof. Kristin P. Bennett for her guidance and

constant encouragement and support. I have been fortunate to have had the chance

to work under her; her unique vision has shaped the way I think about research

problems. I will be forever grateful for her knowledge and the many opportunities

she has given me throughout. This thesis would not be possible without her.

I would like to thank my committee members Prof. Bülent Yener, Prof. John

Mitchell and Prof. Malik Magdon-Ismail for their keen insight and valuable sug-

gestions. I am especially grateful to Prof. Yener for his benevolence and wisdom.

His invaluable support and encouragement gave me the motivation to persist in

working towards my goals. I am very thankful to Prof. Chris Bystroff, Prof. John

Mitchell, Prof. Mark Goldberg and Prof. Mohammed Zaki for their enthusiastic

and comprehensive teaching. I have learned a lot from their courses; the knowledge

they imparted has helped me broaden the scope of my work. I am thankful to Prof.

George Plopper for his great advice during my interactions with him as a teaching

assistant at RPI.

I would like to thank my co-authors Dr. Lauren Cowan of the Centers of

Disease Control, and Dr. Nalin Rastogi, Institut Pasteur de Guadeloupe for sharing

their knowledge and their thoughtful and detailed analysis. Doing research with

members of the TB-Insight team: Dr. Minoo Aminian, James Blondin, Veronica

Ahiati, has been a great learning experience. I am thankful for the opportunity

to work with them. I would like to acknowledge Dr. Inna Vitol, Dr. Gregory

Moore and Dr. Charles Bergeron; their prior work has had a significant impact on

my research. I am grateful to my collaborators Jacob Katz, Dan Croft, Michael

Gonzales, Janani Ranganathan and Srivatsan Raghavan for their contributions that

have facilitated the development and progress of my research.

I would like to express my gratitude to the truly helpful staff of the Computer

Science and Mathematical Sciences Departments, graduate co-ordinators Terry Hay-

den and Dawnmarie Robens, and Chris Coonrad and Joanne Kessler.

xiii

My time at RPI was made pleasant by the company of excellent friends. Thank

you to Prof. Curtis Bahn for introducing me to sitar, that made my time at RPI so

much more enjoyable. I would like to express my heartfelt gratitude to John Felix

for his continuous encouragement and help.

I remain indebted to my brother, Khurush and sister, Shabana who have been

my source of strength and inspiration throughout. The immense love, kindness and

understanding of my parents have made so many things possible. I am extremely

fortunate to have the support of my loving family.

xiv

ABSTRACT

In this thesis, we investigate nonconvex nonsmooth optimization problems

that arise in bioinformatics and general visual data analytics tasks. This work is

motivated by a need for tools that provide a view of the genetic diversity in the

Mycobacterium tuberculosis complex (MTBC) population by extracting information

from molecular epidemiological data. Such tools are crucial for the effective tracking

and control of tuberculosis (TB). We survey classification tools that group MTBC

strains into genetic families and visualization tools for molecular epidemiology of

TB. We develop TB-Lineage a classification tool that employs Bayesian Networks

and domain knowledge of signature patterns in DNA fingerprint data for MTBC

major lineage classification. However, there is no consensus on MTBC lineage and

sublineage definitions amongst experts from the perspective of both phylogenetic

analysis and epidemiology. Understanding the evolutionary history and genetic re-

latedness of strains is essential to developing more accurate lineage definitions. We

create spoligoforests as a tool for visualization of biogeographic diversity of MTBC

that accurately represents both the underlying evolutionary relationships and the

genetic distances between strains thus creating new insights on lineage definitions.

Generating such a graph embedding involves addressing two challenges (i) preserve

proximity relations as measured by some embedding objective, and (ii) simultaneous

optimization of an aesthetic criterion, no edge-crossings in the embedding, to create

a clear representation of the underlying graph structure. We propose a new approach

to generating such an embedding that optimizes for multiple criteria. The method

uses the theorems of the alternative to express the condition for no edge-crossings

as a system of nonlinear inequality constraints. This approach has an intuitive geo-

metric interpretation closely related to support vector machine classification. While

edge crossing minimization can be utilized in conjunction with any optimization-

based embedding objective, here we demonstrate the approach on multidimensional

scaling by modifying the stress majorization algorithm to include penalties for edge

crossings. We use an alternating approach to solve this nonconvex problem, iter-

xv

atively performing two steps: computing the layout for a given set of constraints,

and altering the constraints based on the new embedding. We provide a detailed

analysis of the convergence of this algorithm. Alternating Directions of Multiplier

Methods (ADMM) are proposed as a method for efficiently handling a large number

of non-smooth constraints. MAA+, an iterative solution using ADMM is described

for generating graph embeddings that adhere to non-intersection constraints be-

tween edges. We create spoligoforests generated for all strains of TB observed in

patients diagnosed with TB in the U.S. from 2006 to 2010. We also developed a

standalone tool for drawing spoligoforests. The method is also demonstrated on

a suite of randomly generated graphs with corresponding Euclidean distances that

have planar embeddings with high stress. The proposed edge-crossing constraints

and iterative penalty algorithm can be readily adapted to other supervised and unsu-

pervised optimization-based embedding or dimensionality reduction methods. The

constraints can be generalized to remove intersections of general convex polygons

including node-edge and node-node intersections. Host-pathogen maps that visual-

ize relationships between MTBC strains and host groups are proposed as a testbed

for minimizing intersections between nodes of arbitrary shape and size. MAA+ is

applied to variations of the proximity preservation and edge-crossing minimization

problem, to create low stress embeddings with no overlaps between nodes, edges

and subgraphs.

xvi

CHAPTER 1

Computational Tools for TB Epidemiology

This work was motivated by the need for a better understanding of the ge-

netic diversity in the Mycobacterium tuberculosis complex (MTBC), the causative

agent of tuberculosis (TB). The observed biogeographic diversity in MTBC has

important phenotypic consequences. Strains are known to vary in their virulence,

immunogenicity, transmissibility, associations with host groups and drug-resistance

[48, 47]. A better understanding of the genetic diversity and structure of the MTBC

population will help in the development of better TB tracking and control measures.

We begin this thesis with a survey of classification tools for determining MTBC

lineages and visualization tools for the molecular epidemiology of TB that help

create insight into MTBC genetic diversity. . We also present TB-Lineage, our own

tool for major lineage that incorporates domain and expert knowledge, later in Chapter

1. Note, however, there is no clear consensus on the definition of each lineage or the

desired level of granularity in lineage classification. Phylogenetic analyses using different

biomarkers have resulted in varying definitions of clades of the MTBC [56, 5, 48]. From

an epidemiological perspective as well, varying levels of granularity for subdivisions of the

MTBC population have been proposed [93, 40, 41, 19]. Therefore, in addition to automated

classification tools, there is a need to provide researchers with tools that provide a view

of the genetic diversity of MTBC strains and generate insights about the variations in the

MTBC population.

Spoligoforests, described in this chapter, are phylogenetic forests that represent the

evolutionary relationships and relatedness of strains. They are an effort towards addressing

the need for visualizations of genetic diversity of MTBC. These visualizations must satisfy

Portions of this chapter previously appeared as: (1) A. SHABBEER, C. OZCAGLAR, B.
YENER, ET AL., Web tools for molecular epidemiology of tuberculosis, Infect. Genet. Evol., 12
(2012), pp. 767-781.
(2) A. SHABBEER, L. COWAN, C. OZCAGLAR, ET AL., TB-Lineage: An online tool for clas-
sification and analysis of strains of Mycobacterium tuberculosis complex, Infect. Genet. Evol., 12
(2012), pp. 789-797.
(3) G. KUNAPULI, K. P. BENNETT, A. SHABBEER, ET AL., Online knowledge-based support
vector machines, in Machine Learning and Knowledge Discovery in Databases, Barcelona, Spain,
2010, pp. 145-161.

1

2

the following two requirements: depict proximities between strains as well as clearly repre-

sent the evolutionary history of strains as described by the network structure i.e. have no

intersections between nodes and edges obscuring the graph structure. There exist several

good graph drawing techniques that achieve these embedding goals individually. However,

developing methods that jointly accomplish both goals, proximity preservation as well as

minimizing intersection of nodes and edges, presents interesting challenges. We propose

to address these challenges using mathematical programming techniques. We now define

the three main contributions of this work:

� Formulation of a novel embedding objective that seeks to satisfy multiple functional

and aesthetic requirements for graph layouts – preservation of proximity relations

between nodes as defined in a high-dimensional space in the two-dimensional em-

bedding, and non-intersection of nodes and edges so as to create a clear and effective

representation. We show that the condition for non-intersection of edges (nodes) is

equivalent to the feasibility of a system of nonlinear inequalities. These inequality

constraints can be incorporated as penalties into a continuous embedding objec-

tive. This concept is demonstrated by defining an algorithm, MAA that minimizes

stress (discrepancy between distances in high-dimensional space and distances in the

reduced Euclidean space) while also reducing the number of edge-crossings. The al-

gorithm is a modification of the stress majorization technique that includes penalty

functions for edge-crossings into the stress function. The formulation of the edge-

crossing constraints, the algorithm and initial results are provided in Chapter 4. A

background of existing proximity preserving graph drawing methods and edge-cross

minimization techniques is provided in Chapter 3.

� We propose the use of Alternating Directions of Multiplier Methods (ADMM) for

the development of scalable algorithms that can efficiently minimize the nonconvex,

nonsmooth objectives associated with the problems arising from the constrained

embedding task. In Chapter 5, we describe the motivation and algorithmic frame-

work of ADMM. We then describe MAA+ that applies ADMM-based solutions to

the two problems of finding the separating planes for all pairs of edges (nodes) and

minimizing the penalized embedding objective. We present results of spoligofor-

est generation for the entire set of MTBC strains identified in the U.S. since 2006

obtained from the CDC.

3

� We present practical applications that serve as testbeds for the concepts developed

in this work. In Chapter 5, we present a standalone spoligoforest generating tool

that implements implements MAA+ to create spoligoforests described in Chapter 1.

The tool also provides various measures of genetic similarities for spoligotypes and

MIRU types to represent proximity between strains. In Chapter 5 we describe host-

pathogen maps for depicting host-pathogen associations. We describe the challenges

posed by node overlaps and node-edge intersections that occur when minimizing an

objective that preserves proximity relations between nodes and propose solutions to

address these. We demonstrate the application of overlap removal on objects of arbi-

trary shape and size in several variations of the problem such as minimizing overlaps

between pairs of nodes, edges and subgraphs, while simultaneously minimizing the

proximity-preserving function.

1.1 Molecular Epidemiology of TB

In this chapter, we explore some classification tools that utilize molecular epidemi-

ological data to address current challenges in the understanding of the genetic diversity

of MTBC. While it does not constitute the main contribution of the thesis, these tools

laid the foundation for and provided the original motivation for the work addressed in

subsequent chapters.

Molecular epidemiology integrates molecular biology with traditional epidemiolog-

ical approaches to study the influence of factors identified at the molecular level on the

characteristics of MTBC, and the distribution and control of TB. TB surveillance and

control programs now routinely perform DNA fingerprinting for almost all culture posi-

tive cases identified in the US. Although DNA fingerprints of strains are used primarily to

identify clustered cases and help detect recent transmissions and outbreaks, they capture

information that could potentially be used to develop more advanced tracking and control

measures. Classification of strains into lineages provides perspective on the phenotypic

consequences of the genetic variations of MTBC strains. Phylogenetic analyses conducted

using large sequence polymorphisms (LSPs) and single nucleotide polymorphisms (SNPs)

of MTBC strains have helped investigate the history of evolution of MTBC and estab-

lished the existence of distinct clades. Further investigations into the diversity of MTBC

strains reveal differences in phenotype of strains belonging to the various clades [26, 48].

Large databases of DNA fingerprint information representing the bio-geographic diver-

4

sity of strains in the MTBC population have been amassed by TB researchers worldwide.

Computational methods that classify strains into these clades using DNA fingerprint data

are needed to label data in these databases and that collected for routine surveillance

measures.

In Section 1.2, we provide some background of the molecular methods utilized in

the epidemiology of TB.

1.2 DNA Fingerprinting Methods

In this section, we present a brief description of current methods used for MTBC

genotyping that are referenced in this work. Although, earlier studies found negligible

genetic diversity between MTBC strains [44, 94, 75], the advent of molecular epidemiology

has revealed considerable inter-strain diversity. We discuss potential applications of such

methods to answer some of the questions facing TB researchers today. A more detailed

discussion of the methods can be found in [106, 6, 74].

1.2.1 IS6110 Restriction Fragment Length Polymorphism (RFLP)

This method is a Southern blot hybridization technique and is the gold standard for

molecular epidemiology of MTBC strains [105]. Strains are typed based on the copy num-

ber of IS6110 insertion sequences and the variability in the positions of these sequences.

Strains isolated from epidemiologically linked patients are believed to have identical RFLP

patterns and hence can be used to identify/verify clustered cases. The method has high

discriminative power for strains with copy number greater than six. It was shown that

this method can be used to distinguish closely related strains, but is not suitable to study

the evolutionary history of strains, since the order of events cannot be inferred [37]. The

data format makes it difficult to compare results between labs [74]. Moreover, this method

involves a complicated and time-consuming process requiring sub-culturing of isolates to

obtain sufficient quantities of DNA. Other Polymerase Chain Reaction-based (PCR-based)

techniques have been developed to overcome these disadvantages.

1.2.2 Spoligotyping

Spoligotyping is a PCR-based reverse hybridization technique for genotyping MTBC

[66]. It is a frequently used genotyping tool, and performed on all newly identified culture

positive case of tuberculosis in the United States (US). The method exploits the polymor-

5

phisms in the Direct Repeat (DR) locus to distinguish strains. The DR locus contains

36-bp repeats interspersed with non-repetitive short sequences called spacers. Spoligo-

types are represented as a 43-bit long binary string, constructed on the basis of presence

or absence of these spacers. The portable data format facilitates easy inter-laboratory

comparisons. The loss of spacers can occur due to homologous recombination, or due to

the transposition of IS6110 insertion sequences [37, 72]. Since such mutations by the loss

of spacers in the DR region are irreversible; spoligotypes can be used in the construction

of evolutionary history. However, some caution must be used when using spoligotyping

to study the evolution of strains, as convergent evolution of phylogenetically unrelated

strains to a common spoligotype has been observed [108].

1.2.3 MIRU-VNTR Analysis

Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats

(MIRU-VNTR) based analysis exploits the polymorphisms observed in a selected number

of 41 identified mini-satellite like regions distributed on the chromosome of MTBC. MIRU

typing is based on the number of repeats observed at each of the 12, 15 or 24 selected

MIRU loci determined using a PCR-based method. Each locus was found to differ in its

discriminative power and in its variability in alleles [27, 3]. Twelve, fifteen on twenty-four

selected loci can be used for genotyping for epidemiological discrimination of strains [99].

It was determined that optimally 24 loci should be used to capture the genetic diversity of

strains for phylogenetic studies [99]. A comparative analyses of typing methods has shown

that the discrimination power of MIRU typing is higher than spoligotyping, and only

slightly lower than IS6110-RFLP [100]. The present CDC standard requires spoligotyping

and MIRU typing to be performed on isolates from every TB case identified in the US.

1.2.4 Single Nucleotide Polymorphisms

Single Nucleotide Polymorphisms (SNP) that characterize strains of MTBC have

been identified. Non-synonymous polymorphisms (nsSNP) are changes that alter the

polypeptide sequence and could possibly provide selective advantage to strains. The

nsSNP are especially useful in understanding the acquisition and spread of drug-resistance

in strains, even in strains that share the same DNA fingerprint [82, 25]. On the other hand,

synonymous SNPs (sSNP), silent mutations that are considered to be functionally neutral,

are useful in phylogenetic analyses to study the evolutionary relationships between strains

6

[94, 42, 5, 56, 57].

1.2.5 Long Sequence Polymorphisms

Long Sequence Polymorphisms (LSP) or Regions of Deletions (RD) play an impor-

tant role in phylogenetic analyses and studies of inter-strain diversity. Specific sequences

occurring in progenitor strains are preserved by all strains that have evolved from it

[47, 43]. Studies have identified RDs that characterize MTBC lineages. e.g. all ancestral

strains have the TbD1 sequence conserved, while it is absent in all modern strains [18].

This highly clonal structure of the MTBC population is a result of the lack of horizon-

tal gene exchange [18, 63]. Studies have also found associations between LSPs and the

pathogenicity, drug-resistance and virulence of strains e.g. RD1 [112, 36].

1.3 TB-Insight: TB-Lineage

In this section, we describe a web-based tool that classifies MTBC strains into major

lineages using DNA fingerprint information. For this we culled literature to develop a

coherent set of ordered rules based on observed spoligotype patterns. This tool is described

in greater detail in [89]. Here we provide a summarized description.

The classification of M. tuberculosis complex (MTBC) strains into a phylogenetic

framework has a long history. The analysis of spoligotype patterns led by Sola and Rastogi

revealed the presence of related spoligotypes which have since been grouped into 62 spolig-

otype families or clades [19]. Early studies of sequence diversity in selected genes described

three principal genetic groups which correlated well with spoligotype families [94]. The se-

quencing of several MTBC complex genomes revealed additional SNPs defining additional

genetic groupings [42, 56]. Gagneux and colleagues used comparative genomics to identify

large sequence polymorphisms defining major lineages in the MTBC [48] which were later

supported by the sequencing of 89 genes from 108 strains [61]. These studies have culmi-

nated in the description of a phylogenetic framework for strain classification along with a

proposal for standardized nomenclature [26] which is summarized in Table 1.1. Although

SNPs and LSPs remain the gold standard for strain classification, the congruence between

spoligotypes and LSPs has been reported [26, 67]. We created TB-Lineage, a suite of web

tools that provide automated methods to classify MTBC strains using DNA fingerprint

data into lineages as defined by SNPs based phylogenetic analyses[89, 3]. The tools also

provide an additional feature: generation of spoligoforests to visualize genotype datasets

7

augmented with lineage information determined by the classification tools.

� Input: (i) Spoligotype strains in binary or octal format (ii) 1 (locus MIRU24), 12,

15 or 24 loci of MIRU-VNTR (optional)

� Functionality:

– Classify strains into major lineages using (i) A rule-based system that uses

spoligotype and the MIRU24 locus (when available) to assign lineage labels.

(ii) A Conformal Bayes Network (CBN) that uses a blend of PCR-based meth-

ods.

� URL : http://www.tbinsight.cs.rpi.edu/run tb lineage.html

1.3.1 TB-Lineage: TB-Rules

TB-Rules is a rule-based classification system available as part of the TB-Insight

suite of tools that classifies strains of MTBC into major lineages: the modern lineages

Euro-American, East-African Indian (CAS), East-Asian (Beijing) and the ancestral lin-

eages M. africanum (West African 1 and 2), M. bovis, Indo-Oceanic. The rules were

culled from prior literature on spoligotype signatures and various epidemiological stud-

ies conducted worldwide [19, 88, 39, 95, 40] and refined based on expert guidelines from

the Centers for Disease Control and Prevention (CDC) [89]. Prediction is done using

the spoligotype sequence and, if available, the MIRU24. The locus MIRU24 is known to

correlate with the TbD1 deletion, and therefore, can be used to characterize strains as

modern or ancestral [98]. However, some strains do not conform to the observed patterns

in the number of repeats at MIRU24. Or in some cases, as with historical datasets, MIRU

data are not available. For such cases, the tool employs a Naive Bayes classifier that uses

spoligotype data alone to predict whether a strain is modern or ancestral. The prediction

is then used as a surrogate for the MIRU24 locus in the rules. This system relies on certain

signature deletions which are assumed to correspond to speciation events.

1.3.1.1 Spoligotype Signatures

Prior literature describes spoligotype-based visual rules for classification, as well

as bioinformatics approaches that identify specific spacers and loci that can be used to

differentiate strains into groups [14, 19, 29, 39, 40, 41, 88, 93]. This literature including

8

Table 1.1: Mapping of lineage names from conventions in prior literature.

TB-Lineage
Family

LSP-based
Lineages [48]

SpolDB4 Family [19]
Principal
genetic
group [94]

TbD1 as-
signment
[18]

M. bovis M. bovis

BOV1, BOV2,
BOV3, BOV4,
BOV1-variant1,
BOV2-variant1,
BOV1-variant2,
BOV2-variant2

1 Ancient

West African 1
West African 1
(lineage 5)

Afri2, Afri3 1 Ancient

West African 2
West African 2
(lineage 6)

Afri1 1 Ancient

Indo-Oceanic
Indo-Oceanic
(lineage 1)

EAI-5, EAI1-SOM,
EAI2-Manila, EAI2-
Nonthaburi, EAI3-
IND, EAI4-VNM,
EAI6-BGD1, EAI6-
BGD2, EAI8-MDG

1 Ancient

East Asian
East Asian
(lineage 2)

Beijing, Beijing-like 1 Modern

East-African
Indian

East-African
Indian (lineage
3)

CAS1-Delhi, CAS1-
Kili, CAS1-variant
CAS2

1 Modern

Euro-
American

Euro-
American
(lineage 4)

T1, T1-RUS2,
T2,T2-Uganda, T3,
T3-ETH, T4, T4-
CEU1, T5-Madrid2,
T5-RUS1, Tus-
cany, S,X1, X2,
X3, X2-variant1,
X3-variant1, X3-
variant2, H1, H1-
variant1, H2, H3,
LAM01, LAM02,
LAM03, LAM04,
LAM05, LAM06,
LAM07, LAM08,
LAM09, LAM10,
LAM07-TUR,
LAM10-CAM,
LAM11-ZWE,
LAM12-Madrid

2 and 3 Modern

9

descriptions of visual rules for SpolDB4 sub-families was synthesized to generate a set of

observations for major lineage classification:

� Spacers 29-32 and 33-36 in the direct repeat locus may be used to determine if a

strain belongs to principal genetic group 1 (PGG1) or groups 2 and 3 (PGG2/3).

If spacers 33 36 are absent and at least one of spacers 29-32 is present, the strain

belongs to PGG2/3. If at least one of spacers 33 36 is present, then the strain

belong to PGG1. If spacers 29 36 are absent, then the principal genetic group

cannot be determined on the basis of spoligotype alone.

� PGG 1 strains with spacer 3, 9, 16 and 39-43 absent are M. bovis.

� PGG1 strains with spacers 8, 9, and 39 absent are M. africanum. M. africanum

strains that have spacers 8-12 and 37-39 absent belong to West African 1 lineage

and strains that have spacers 7-9 and 39 absent belong to West African 2.

� PGG 1 strains with spacers 29-32 absent and spacer 34 absent belong to the Indo-

Oceanic lineage.

� PGG1 strains with spacers 1-34 absent belong to the East Asian lineage.

� PGG 1 strains with spacers 4-7 and 23-24 absent belong to the East-African Indian

lineage.

� PGG 2 and 3 strains belong to the Euro-American lineage.

� The number of repeated units at locus MIRU24 correlates with the TbD1 deletion.

Strains with the sequence intact (ancient) will have more than one repeated unit at

MIRU24 while strains with the sequence deleted will have a single repeated unit in

this locus.

A coherent set of rules for lineage classification was generated on the basis of the

observations listed above. The order of the rules is equivalent to checking membership in

PGG 1 first. When there is a deletion from 29-36, since assignment to principal genetic

groups cannot be made on the basis of spoligotype alone, the MIRU24 is used to determine

if a strain is ancestral and belongs to PGG 1. If the MIRU24 data is not available the

Naive Bayes classifier is used to predict if a strain is ancestral and belongs to PGG1 based

on the spoligotype. Assignment to specific lineages within PGG 1 is based on MIRU24

10

Figure 1.1: Rules to classify M. tuberculosis strains into major lineages
based on the presence or absence of spacer sequences and
the number of repeats observed at the MIRU24 locus. The
rules are applied in the order specified. The label assigned to
a strain corresponds to the first rule that meeting criteriais
satisfied.

(or modern/ancestral prediction by the Naive Bayes classifier) and pertinent clauses for

the lineages as represented in Fig 1.1.

Some rules rely on the number of repeats observed at MIRU24 locus to predict

whether a strain is ancestral or modern. There is an observed correlation between the

number of repeats at locus MIRU 24 and the TbD1 deletion that is used to discriminate

between modern and ancestral strains [18]. Modern strains typically contain one repeat at

MIRU24 while ancestral strains contain greater than one repeat [39]. However, there are a

non-trivial percentage of exceptions to this rule in the CDC dataset. The number of repeats

at the MIRU24 locus deviates from the expected value with a non-negligible probability

for M. bovis and M. africanum. Moreover, since MIRU-VNTR typing was adopted as a

national standard in 2004, MIRU-VNTR type data may not be available for earlier records.

In order to overcome these limitations, a Naive Bayes classifier was developed to classify

11

spoligotypes as ancestral or modern. The model was trained using labeled spoligotype data

with spoligotypes belonging to the East Asian, East-African Indian, and Euro-American

lineages assigned label modern and spoligotypes belonging to the M. africanum, M. bovis,

and Indo-Oceanic lineages assigned label ancestral. Previously, MTBC strains have been

successfully classified at varying levels of granularity on the basis of spoligotype data

using Bayesian Networks [107]. Instead of the MIRU24 value that originally served as a

surrogate for modern or ancestral, the modern or ancestral prediction made by the Nave

Bayes classifier is substituted into the rules.

1.3.1.2 Naive Bayes Classifer to predict Modern or Ancestral

Each spoligotype is represented as a binary 12-dimensional feature vector. Each

dimension represents the presence/absence of a contiguous deletion. Presence of a deletion

means no spacers are present in the subsequence, while absence means at least one spacer

is present in the subsequence. The evolution of the DR locus occurs via deletion of one

or more contiguous Direct Variable Repeats (DVRs) with some non-negligible probability,

whereas insertion of DVRs is highly unlikely [108]. The features selected were single

deletions of spacers 3, 16, 8, 9, 39 and contiguous deletions of spacers 1-34, 25-28, 29-

32, 33-36, 39-43, 4-7, and 23-24. These deletions are believed to be speciation events as

described earlier. If at least one spacer is present in the deletion sequence it is represented

as a 1, presence of the deletion is represented by a 0. These bits are concatenated to form

a binary vector. Eg. Considering the deletions in the order specified, if spacers 3,16,8,9,39

and 23-24 are absent, while there is at least one spacer present in sequences 1-34, 25-28, 29-

32, 33-36, 39-43, and 4-7 the spoligotype is represented as 000000000000770. The selection

of deletion sequences was made on the basis of the observations listed above about the

sequences that are relevant for the lineage classification task and further validated based

on the information gain as described in the supplementary information.

The Naive Bayes model assumes that each feature Sd is independent given the class

Ci (modern or ancestral). Sd takes value 1 if at least one spacer is present in deletion

d, and 0 otherwise. The probability of the deletion d being absent (at least one spacer

being present) for a strain of class i is given by pid, and the probability of a deletion d

being present (no spacer(s) being present) is given by (1−pid). We assume the conditional

independence of the features of variable S. The probability of occurrence of a spoligotype

12

S given the class Ci is therefore

P (S|Ci) =
12∏
d=1

(pid)
Sd(1− pid)

(1−Sd) (1.1)

In the test phase, strains were classified into the 2 classes modern and ancestral.

The probability of a strain S belonging to class Ci was computed as

P (Ci|S) ∝ P (Ci)P (S|Ci)/P (S)

∝ P (Ci)P (S|Ci)

The values of pid and P (Ci) were calculated by counting the appropriate proportion

of values in the data with Laplace smoothing to deal with deletions observed 0 times.

The strain S is assigned to the class i for which its conditional probability P (S|Ci) is the

highest. The value of the MIRU24 locus is predicted on the basis of the modern/ancestral

classification and used in place of the MIRU24 in the rules.

The accuracy of the rules was evaluated on two datasets from the CDC, with

CDC2011 containing genotypes not analyzed during development, along with datasets

from MIRU-VNTRplus [1], Brussels[1] and SpolDB4 [19] described in prior publications.

A summarized description of these datasets is provided in Table 1.2. A high level of

accuracy was reported on all datasets, with the labels assigned by the online tool match-

ing CDC labels, LSP-based analysis or SNP-based analysis in greater than 99% of cases.

A comparison of the f-measure of the rules used with spoligotype and MIRU-VNTR for

each lineage applied to all the datasets is reported in Table 1.3. Near perfect f-measure,

i.e. close to 1, were observed across all lineages. The rules work equally well when only

spoligotypes are available.

1.3.1.3 TB-Insight: Conformal Bayes Net

This tool employs a hierarchical Bayesian network to classify MTBC strains into

the major genetic lineages using different blends of PCR-based biomarkers [3]. The design

of the probability-based model exploits known properties about the structure, position

and mutation mechanisms of spoligotypes and MIRUs. The MIRU loci are distributed

across the genome of the MTBC but mostly away from the DR locus. The assumption

of independence between the MIRU loci and between the MIRU loci and the spacers is

13

Table 1.2: Summary description of the datasets used in the development
of the online tool TB-Lineage.

Dataset No.
dis-
tinct
spolig-
o-
types

No.
dis-
tinct
MIRU

No.
dis-
tinct
geno-
types

M.
bo-
vis

West
African
1

West
African
2

Indo-
Oceanic

East
Asian

East-
African
Indian

Euro-
American

CDC 3198 5430 10828 685 65 78 5177 4829 1446 24781
CDC2011 1548 2363 3144 56 19 22 421 269 403 1948
MIRU-
VNTRplus

86 120 145 11 18 11 16 10 10 87

Brussels 197 422 378 17 4 9 27 16 30 339
SpolDB4 1604 - 1589 4731 228 89 2716 3973 425 19050

Table 1.3: Comparison of f-measure of classification in the datasets used
in this study.

Dataset East
Asian

East-
African
Indian

Euro-
American

Indo-
Oceanic

West
African 1

West
African 2

M. bovis

CDC 1.0 0.9935 0.9995 0.9990 0.9559 0.9873 0.9985
CDC2011 0.9926 0.9926 0.9969 0.9916 0.95 1.0 0.9907
MIRUVNTRplus1.0 0.9524 0.9942 1.0 1.0 1.0 1.0
Brussels 0.9697 1.0 0.9985 0.9643 0.8000 1.0 1.0
SpolDB4 0.9926 0.9926 0.9969 0.9905 0.9268 1.0 0.990

made on the basis of this fact. The number of repeats at each MIRU locus is frequently

between 0 and 9, and in some cases greater than 9. Therefore, each MIRU locus is modeled

as a multinomial distribution with possible values 0, 1,. . . ,8, and ≥ 9 [2]. Spoligotypes

are modeled as a multivariate Bernoulli distribution with “Hidden Parents”, as in the

SPOTCLUST model [107]. The CBN model exploits the correlation between the number

of repeats at locus MIRU24 and the conservation of the TbD1 deletion [98] and represents

this as a causal relationship. Therefore, a top-level classification into modern and ancestral

strains, characterized by the absence or presence of the TbD1 deletion respectively, is done

on the basis of locus MIRU24. Thus, the CBN models the distributions of the MIRU loci

and the spoligotypes of various lineages, and provides a method of assigning labels for

strains based on the spoligotype and/or any number of MIRU loci as summarized in the

pseudocode provided below.

The independence assumption between all loci allows for predictions to be made

using any number of biomarkers depending on availability. The design of the model

allows it to be trained using all available data, even if the data is incomplete, i.e. not

all biomarkers are available. This model is flexible and extensible to including different

14

program 1 Assign strain major lineage label using CBN.

x←spoligotype of strain
M ←MIRU pattern of strain
cj ←Major lineage j
m11 ← P (xd = 1|Hd = 1)← 0.9
m10 ← P (xd = 1|Hd = 0)← 10−7

m00 ← P (xd = 0|Hd = 0)← 1−m10

m01 ← P (xd = 0|Hd = 1)← 1−m11

for MTBC lineage cj do
t1←∏43

d=1(pjdm11 + (1− pjd)m10)
xd((1− pjd)(1−m10) + pjd(1−m11))

(1−xd)

t2←
k∑

l=1

P (cl)

43∏
d=1

(pldm11 + (1− pld)m10)
xd((1− pld)(1−m10) + pld(1−m11))

(1−xd)

P (cj |x)←
P (cj)t1

∏

i∈MIRU

P (Mir|cj)P (cj |M24)P (M24)

t2
∏

i∈MIRU

P (Mir|cj)P (cj |M24)P (M24)

{pjd is the probability that spacer d is present given class cj}
{P (Mir|cj) is the probability of having r repeats at MIRU locus i given class
cj, where r is the number of repeats present at locus i in user strain}
{P (M24) is the probability of having less than 2 repeats at locus MIRU24}

end for
lineage← argmaxcjP (cj|x)

types of biomarkers as they become available. Host-related characteristics and risk factors

may also be included into such a model, as suggested in [53]. Hybrid approaches that

incorporate a rule base into a Bayesian Network model have been developed recently that

benefit from the advantages of both rule-based and probabilistic approaches [4].

Thus, classification of MTBC strains into lineages provides insight into the genetic

diversity of the strains being investigated and helps identify the predominant genetic

groups in a population. Further, strains associated with different lineages have been found

to vary in their immunogenicity, pathogenicity, virulence, transmissibility and drug suscep-

tibility [104, 83, 47, 48]. The observed associations between clades previously identified by

phylogenetic analysis and geographical regions indicate the influence of social factors such

as migration, and other host-related factors on disease dynamics. TB-Lineage provides a

suite of methods to classify strains into these groups using only the DNA fingerprint data,

collected as part of routine TB surveillance.

15

1.4 Spoligoforests: Validation of Lineages

Spoligoforests are a visualization of the number of occurrences of strains, their distri-

bution by lineage, and potential evolutionary relationships between strains. The visualiza-

tion of spoligotypes provided by TB-Vis builds on the design of spoligoforests [84], wherein

each node represents a unique spoligotype and each edge between the parent spoligotype

and the child represents a putative mutation event. The spoligoforest created based on

the genotypes in the CDC dataset is shown in Figure 2. Each lineage corresponds to a

unique color. A node represents a cluster of strains of the same spoligotype but different

MIRU types, and is assigned a color based on the lineage to which the spoligotype belongs.

Node sizes are representative of the number of occurrences of strains of that spoligotype

in the dataset on a log scale (base 2). Edges indicate potential evolutionary relationships

resulting from a contiguous deletion of spacers and changes in the number of repeats at

loci of MIRU-VNTR types associated with the spoligotype, and are thus an indication of

the relatedness of strains.

However, the spoligoforest does not visualize all the information we need to under-

stand the genetic diversity in the dataset. There is a need to preserve proximity relations

between nodes i.e. the distances between nodes in the visualization must match the genetic

distances. This goal introduces new challenges such as edge-crossings and node-overlaps

that obscure the underlying relationships in the dataset. We investigate background work

pertaining to this problem in Chapter 3 and our approach in Chapter 4.

16

Figure 1.2: Spoligoforest representation of genetic diversity of MTBC strains
in 37,061 isolates collected from TB patients in the United States
between 2004-2008. Each lineage corresponds to a unique color
as shown in the legend. Each node represents a cluster of strains
of the same spoligotype but different MIRU types, and the size
represents the number of isolates on a log scale. The lineages are
highly cohesive with few edges between lineages.

CHAPTER 2

Classification and Visualization Tools for TB

In this chapter, we survey publicly available classification and visualization tools de-

signed to use molecular epidemiological data to extract information that can be employed

for the effective tracking and control of tuberculosis (TB) . The application of molecular

methods for the epidemiology of TB complement traditional approaches used in public

health. DNA fingerprinting methods are now routinely employed in TB surveillance pro-

grams and are primarily used to detect recent transmissions and in outbreak investigations.

Here we present web tools that facilitate systematic analysis of Mycobacterium tuberculosis

complex (MTBC) genotype information and provide a view of the genetic diversity in the

MTBC population. They provide an integrated platform for researchers to use molecular

epidemiological data to address current challenges in the understanding of TB dynamics

and the characteristics of MTBC.

This chapter contains relevant extracts from the survey paper [90] on ‘Web Tools

for Molecular Epidemiology of Tuberculosis‘. A summary of all tools surveyed in this pa-

per are in the companion website at http://www.tbinsight.cs.rpi.edu/molepisurvey.html.

Throughout this paper, we utilize the surveillance data obtained from the New York

State Department of Health (henceforth referenced as NYS), comprised of spoligotype

and MIRU type information of MTBC strains from patients diagnosed during the period

2004-07. The NYS dataset is comprised of 674 isolates: 268 distinct spoligotypes, 361

distinct MIRU types and 500 distinct RFLP patterns. This genotype information aug-

mented with expert-assigned major lineage labels is used to explore and test the various

tools presented.

In Section 2.1, we analyze various classification models. Phylogenetic analyses have

shown that MTBC strains may be classified into related genetic groups using various

biomarkers. We look at some tools that can classify strains efficiently using only the

DNA fingerprint, and will help in the investigation of phenotypic characteristics shared

by strains within each lineage.

In Section 2.5, we cover visualization methods that represent surveillance data in

This chapter previously appeared as: (1) A. SHABBEER, C. OZCAGLAR, B. YENER, ET
AL., Web tools for molecular epidemiology of tuberculosis, Infect. Genet. Evol., 12 (2012), pp.
767-781.

17

18

ways that help study the diversity in strain and host populations. These can reveal

unobserved epi-links and help identify typical as well as anomalous associations between

strain and host groups.

2.1 Classification Tools for TB

Classification of MTBC strains into lineages provides insight into the genetic diver-

sity of the strains being investigated and helps identify the predominant genetic groups in

a population. Further, strains associated with different lineages have been found to vary

in their immunogenicity, pathogenicity, virulence, transmissibility and drug susceptibility

[104, 83, 48, 47]. The observed associations between clades previously identified by phy-

logenetic analysis and geographical regions indicate the influence of social factors such as

migration, and other host-related factors on disease dynamics [48]. We need methods to

classify strains into these groups using only the DNA fingerprint data, collected as part

of routine TB surveillance.

Although visual rules and nearest neighbor based approaches performed on highly

curated databases can be used to classify strains, these do not constitute scalable solutions.

Visual methods may involve considerable human effort and nearest neighbor approaches

may involve a large number of pairwise comparisons. To address this problem, compu-

tational methods for lineage classification have been developed. These tools complement

existing visual rules. Classification results will help recognize variations in phenotypic

characteristics of lineages. In this section, we present some web-based automated tools

that allow classification to be performed easily and efficiently on large datasets. Such tools

can provide perspective on differences in phenotypic characteristics, and phylogeographic

associations of MTBC strains with host populations.

2.2 MIRU-VNTRplus

MIRU-VNTRplus is a nearest neighbor based classification tool for MTBC strains.

It relies on a highly curated database comprising of the detailed profiles of 186 strains

representing all MTBC lineages [1]. The website provides access to the LSP, SNP, IS6110

RFLP fingerprint, spoligotype, 24-locus MIRU profile, and drug resistance profile of these

reference strains as well as species, lineage, and epidemiologic information pertaining to

these strains. The website provides additional tools that facilitate analysis of user strains

with respect to these reference strains.

19

� Input: User strains comprising of one or more of the following fields in specified

format:

(i) MIRU-VNTR type (ii) Spoligotype (iii) RD (iv) SNP (v) Susceptibility

� Functionality:

– Compare user strains with reference strains

– Identify strain lineages by similarity search

– Construct phylogenetic trees using neighbour-joining (NJ) or Unweighted Pair

Group Method with Arithmetic Mean (UPGMA) algorithms

– Helps establish universal nomenclature by facilitating assignment and querying

of MtbC15-9 codes

� URL: http://www.miru-vntrplus.org

The identification program assigns species labels, lineage labels, SpolDB4 lineage

labels [19] and RD Gagneux’s lineage labels [47] to user uploaded strains. Identification by

similarity search is a best-match approach which employs a nearest-neighbor or parsimony-

based analysis to find reference strains whose genetic profiles most closely match the user

strains. Genetic relatedness between strains is determined based on one of the following

genetic distance measures provided.

� Categorical Distance (default for all markers): This is the normalized sum of the

number of markers that have different alleles.

� Chord distance DC (MIRU-VNTR only): This is a geometric interpretation based

on the ”angular distance” between the two strain groups determined as the sum of

square root of frequencies of each allele observed in both strain groups [21].

The following two distance measures are especially applicable for tandem repeat loci

following a stepwise mutation model (SMM), such as the MIRU-VNTR. The SMM

assumes that at each mutation step, microsatellites only gain or lose one repeat.

� (δμ)
2 : This is the average of the difference in repeat numbers of alleles at all loci

[54].

� DSW (stepwise weighted distance): This measures the probability that two alleles

are different for two different strain groups, weighted by the absolute value of the

difference in the number of repeats for the two strains [92].

20

Lineage labels may be assigned to a strain if there exists one or more matching

reference strains exist that are within the user-defined distance cut-off. The cut-off spec-

ifies the accepted tolerance in finding the closest match. This choice needs to balance a

trade-off between choosing a large value to reduce the effect of noise, such as erroneous

or irrelevant markers, and a small value, for higher specificity in lineage identification.

Additionally, better sensitivity and specificity were reported when multiple markers are

used in conjunction as opposed to a single biomarker. These genetic distances (normalized

over the number of loci in each biomarker) may be weighted based on user discretion. The

tool provides default values based on heuristics to guide the user to getting best results

in strain identification.

Users can construct a phylogenetic tree to inspect the genetic relatedness of strains

using the neighbor-joining (NJ) algorithm (recommended by [1]) or the Unweighted Pair

Group Method with Arithmetic Means (UPGMA). Single or multiple markers may be

used to determine the distance between strains, as with the similarity search. Reference

database strains can optionally be included in the tree calculation. The tool guidelines

recommend that the tree be rerooted using an M. cannettii strain. Strains may be colored

based on user input or automatically using fields such as species or lineage. The tree-

based identification feature can also be used to refine labels assigned by similarity search.

The phylogenetic tree can be viewed and saved in various file formats, and may also

be embedded alongside the strain information. The Calculate-Tree feature helps view the

inferred evolutionary relationships between strains in the dataset based on various distance

measures as well as additional information incorporated from the reference dataset. In

the following subsection, we illustrate the functionality of this tool by analyzing genotype

data in the NYS dataset.

Analysis of NYS dataset using MIRU-VNTRplus: 500 isolates genotyped by spolig-

otyping and MIRU typing from the NYS dataset were uploaded, and 435 of these were

assigned labels using the similarity search tool. Figure 2.1 represents a tree in radial for-

mat created from this dataset using the NJ algorithm. In most cases, the strains that

were not labeled by similarity search, can be easily identified based on the other user and

reference strains belonging to the same subtree in the phylogenetic tree. From Figure 1

it can be seen that the Euro-American lineage comprising of sub-lineages such as LAM

(77 strains), Haarlem (101 strains) and X (57 strains) are the most prevalent in the NYS

dataset. This is in accordance with the previously observed stable associations between

21

Figure 2.1: NJ tree in radial format created from the NYS dataset using
the tree-based identification tool on MIRUVNTRplus.org.
Lineage labels were assigned using similarity search, followed
by tree-based analysis. The strains were assigned colors based
on their lineage using the options available on the Calculate
Tree tool. The scale of the genetic distance and the colors
associated with each lineage are indicated in the legend.

22

host and MTBC populations [63], and hypotheses of host-pathogen co-evolution [61].

2.3 TB-Insight: SPOTCLUST

SPOTCLUST is a mixture-model-based approach to determining MTBC lineages of

spoligotypes [107]. The MTBC lineages predicted by the tool correspond to highly cohesive

genetic groups identified by the two different probability models (i) the 36-component

SpolDB3 based Model [40, 41], and (ii) Randomly Initialized Model (48 components).

� Input: Spoligotype strains in binary or octal format

� Functionality:

– Determine MTBC lineages of the spoligotype strains using (i) SpolDB3 model

(ii) Randomly Initialized Model. Results also include the probability that the

spoligotype belongs to the lineage which indicates the confidence of the model.

� URL: http://www.tbinsight.cs.rpi.edu/run spotclust.html

The two models are created differently, using different number of clusters k and

initial class probabilities. Randomly Initialized Model (RIM) used Monte Carlo Cross

Validation to determine an initial value of the number of clusters, while the SpolDB3

model is based on findings in [40]. The families identified by the SpolDB3 model closely

match the lineages defined in SpolDB3 [40]. In both models, spoligotypes are repre-

sented as multivariate Bernoulli distributions[107]. The probability of the presence of

each spacer is a parameter of the model, and each of the 43 parameters are treated as

conditionally independent. Expectation Maximization (EM) was used to find maximum

likelihood estimates of the model parameters: the class probabilities and the 43-variable

Bernoulli distribution (the conditional probabilities of the presence of the 43 spacers given

the class). Both SPOTCLUST models take into account the fact that spacers are lost

but rarely gained. To do so, the models use hidden variables called ‘Hidden Parents‘,

whose ‘children‘, the observed strains, may lose a spacer with a small but non-negligible

probability. The probability of a child gaining a spacer however, is extremely small. A

Naive Bayes classifier determines the most likely class label cj for a spoligotype x, as the

one with highest P (cj |x). The P (cj |x) is determined for each lineage based on the product

of probabilities of presence or absence of spacers given the class (as defined by the model)

while accounting for the Hidden Parent model.

23

Figure 2.2: Most probable family using RIM and SpolDB3 model of
SPOTCLUST. The probability alongside the lineage predic-
tion is a measure of the confidence of the prediction.

Analysis of NYS dataset using SPOTCLUST: Based on the correspondence between

SpolDB3 lineages and the major lineages, 99.25% of the labels assigned to the NYS dataset

by SPOTCLUST were correct. A sample output for 3 strains from the NYS dataset

obtained by running through SPOTCLUST is provided in Fig. 2.2.

2.4 TB-Insight: CBN

TB-Insight is a set of web tools that provide automated methods to classify MTBC

strains and visualize genotype datasets [89, 3].

Input: (i) Spoligotype strains in binary or octal format (ii) 1 (locus MIRU24), 12,

15 or 24 loci of MIRU-VNTR (Optional)

Functionality:

– Classify strains into 6 major lineages using (i) A rule-based system that uses

spoligotype and the MIRU24 locus (when available) to assign lineage labels.

(ii) A Conformal Bayes Network (CBN) that uses a blend of PCR-based meth-

ods.

URL: http://www.tbinsight.cs.rpi.edu/run tb lineage.html

This tool employs a hierarchical Bayesian network to classify MTBC strains into

the major genetic lineages using different blends of PCR-based biomarkers [3]. The design

of the probability-based model exploits known properties about the structure, position

and mutation mechanisms of spoligotypes and MIRUs. The MIRU loci are distributed

across the genome of the MTBC but mostly away from the DR locus. The assumption of

independence between the MIRU loci and between the MIRU loci and the spacers is made

on the basis of this fact. The number of repeats at each MIRU locus is frequently between

0 and 9, and in some cases greater than 9. Therefore, each MIRU locus is modeled

as multinomial distributions with possible values 0, 1,. . . ,8, and ≥ 9 [2]. Spoligotypes

24

are modeled as a multivariate Bernoulli distribution with ‘Hidden Parents‘, as in the

SPOTCLUST model [107]. The CBN model exploits the correlation between the number

of repeats at locus MIRU24 and the conservation of the TbD1 deletion [98] and represents

this as a causal relationship. Therefore, a top-level classification into modern and ancestral

strains, characterized by the absence or presence of the TbD1 deletion respectively, is done

on the basis of locus MIRU24. Thus, the CBN models the distributions of the MIRU loci

and the spoligotypes of various lineages, and provides a method of assigning labels for

strains based on the spoligotype and/or any number of MIRU loci.

The independence assumption between all loci allows for predictions to be made

using any number of biomarkers depending on availability. The design of the model

allows it to be trained using all available data, even if the data is incomplete, i.e. not

all biomarkers are available. This model is flexible and extensible to including different

types of biomarkers as they become available. Host-related characteristics and risk factors

may also be included into such a model, as suggested in [53]. Hybrid approaches that

incorporate a rule base into a Bayesian Network model have been developed recently that

benefit from the advantages of both rule-based and probabilistic approaches[4].

Analysis of NYS dataset using TB-Lineage: The CBN and TB-Rules were tested

on the NYS dataset. All the lineage labels assigned by TB-Rules matched the labels

assigned by human experts at the CDC exactly. The CBN classified 673 isolates correctly,

and misclassified a single strain, ST 2, as East-Asian instead of Euro-American. This

misclassification occurs since this spoligotype sequence, 000000004020771, closely matches

the signature of Beijing strains. The error can possibly be explained by the fact that the

Bayesian Network uses individual spacers as features, and this does not account for the

fact that one or more adjacent spacers may be deleted in a single mutation event. Such

errors can potentially be avoided by using contiguous deletions as features as in [89, 14, 79],

instead of the individual spacers.

Other computational approaches have also been applied to accomplish classification

of strains of MTBC. Data mining approaches have been specified in [88, 39] that apply

decision tree based approaches to classify strains. Feature selection was performed on the

basis of information gain to identify the smallest subset of loci that need to be investigated

to classify strains. In addition to web tools for classification of strains into major lineages,

there is a need for tools that will perform automatic classification of strains into sub-

lineages, i.e. genetic groups of finer granularity. Existing methods can be extended for

25

this purpose by incorporating expert knowledge based on previously defined visual rules

for sub-lineage classification [19, 95].

2.5 Visualization Tools for TB

Visualization of public health data is emerging as a popular aid to traditional meth-

ods of epidemiology. Modeling and visualizing genetic relatedness and patterns of muta-

tion over relatively short periods of time are crucial for epidemiological studies as they

help analyze recent transmission trends. Identifying previously unrecognized epi-links and

associations between patient and strain groups helps focus public health efforts in an ef-

fective manner. In this section, we look at web-based tools that address the need for

such visualizations and discuss other possibilities that could help further the application

of visual analytics for TB epidemiology.

2.6 Spoligoforests

� Input: (i) Spoligotype strains in binary or octal format (ii) 12, 15 or 24 loci of

MIRU-VNTR

� Functionality:

– Draw spoligoforest colored by lineage (obtained from TB-Lineage) depicting

genetic diversity and relatedness of strains in dataset.

� URL: http://www.tbinsight.cs.rpi.edu/run tb vis/spoligoforests.html

TB-Vis provides a visualization tool based on spoligoforests designed by [84] that

depicts the genetic diversity in the MTBC strain population by lineage and the possi-

ble evolutionary relationships between strains. Figure 2.3 represents a spoligoforest con-

structed from the NYS dataset using TB-Vis. The MTBC strain population is depicted

in the form of a forest of radial trees in which each node represents a distinct spoligotype

that may be associated with one or more MIRU types. The sizes of the nodes represent

the number of distinct MIRU types associated with the spoligotypes and are an indication

of the inter-strain genetic diversity. An edge represents a possible mutation. The children

of each node i, thus represent the strains that i can mutate into. Spoligotype mutation is

modeled by deletion of one or more adjacent spacers, whereas a change in the number of

repeats at a MIRU locus is regarded as a single mutation event for the MIRU type. The

26

evolutionary relationships between strains is modeled based on genetic distances between

MIRU patterns and spoligotypes of strains. Each strain may have multiple candidate

parents. A single parent is chosen for each strain based on a comparison of the genetic

distances between each parent-child pair. The following distance measures are used to se-

lect the most likely parent from amongst the candidates generated: (i) Hamming distance

between MIRUs (the number of loci in which the two MIRU types differ) (ii) Hamming

distance between spoligotypes (the number of spacers in which the two spoligotype se-

quences differ) (iii) Euclidean distance between MIRUs (root sum of squared differences

in the numbers of repeats at each MIRU locus of the two strains).The nodes are colored

based on the lineage identified by TB-Insight (TB-Rules). Thus, the visualization provides

insight into the relatedness of strains based on the spoligotype and MIRU type of strains,

as well as a view of the distribution of strains by lineage.

2.7 Host-Pathogen Treemaps

� Input:

– Genotype information which may include (i) Spoligotype strains in binary or

octal format (ii) 12, 15 or 24 loci of MIRU-VNTR (iii) RFLP (iv) SNP

– Patient’s continent of birth

� Functionality:

– Draw host-pathogen treemap to visualize trends in associations between strain

and patient groups, and identify anomalies.

� URL: http://www.tbinsight.cs.rpi.edu/run tb vis/treemaps.html

Host-pathogen maps available at TB-Vis, provide a graphical representation of strain

and patient associations. Patients are represented as nodes within the nested boxes de-

picting strains. The visualization depicts each strain by telescopic boxes depending on

the number of biomarkers uploaded. In Figure 2.4, the nested boxes represent the spolig-

otype, MIRU type and RFLP pattern, respectively. Other biomarkers such as SNPs may

also be used. Patient characteristics such as birth-place are represented by color coding

the nodes by continent of birth. This visualization provides a means of tracking trends

in transmissions between patients infected with the strains of interest. It can help reveal

27

Figure 2.3: Spoligoforests of 268 distinct spoligotype strains from the
NYS dataset of 674 isolates generated using the visualization
tool of TB-Lineage. Each lineage corresponds to a unique
color as shown in the legend. Each node represents a cluster
of strains of the same spoligotype and the node size represents
the number of isolates on a log scale. Each edge represents
a mutation from a parent spoligotype sequence to the child
sequence by the loss of one or more adjacent spacers i.e. a
contiguous deletion. Note lineages are highly cohesive with
few edges between lineages. This indicates the high degree
of genetic relatedness between strains within a lineage.

previously unrecognized epidemiological links between patients. Anomalous behavior of

strain groups can also be identified. Epidemiological investigations require the investment

of significant time and resources. Therefore, identifying suspicious clusters using such

visual tools will help towards the efficient allocation of efforts for case investigations.

The host-pathogen maps are based on the design of treemaps [91]. Hence, the

use of nested boxes to depict strains is well-suited to capture the inherent hierarchical

relationship between biomarkers used for MTBC genotyping arising out of differences in

their discriminative abilities [69, 70]. The efficient use of space by treemaps allows a

big-picture view of a large number of strains, and thus enables identifying typical and

anomalous behavior of a strain with respect to the others in the study. This could lead

28

Figure 2.4: Host-pathogen maps of patients from the NYS dataset in-
fected with strains of the Indo-Oceanic lineage that visualize
associations between the genotype and host characteristics.
Strains are represented by triples of spoligotype, MIRU and
RFLP patterns and are depicted by nested boxes. Patients
are depicted as nodes colored by region of birth. The vi-
sualization shows the predominance of strains of the Indo-
Oceanic lineage in patients from South-East Asia and the In-
dian subcontinent. Clusters of cases with identical associated
genotype appear in bigger boxes, thus bringing attention to
possible outbreaks.

to the identification or prediction of outbreaks. The treemaps are interactive enabling the

user to search for and zoom in on strains of interest. Thus, treemap-based host pathogen

maps provide a compact overview of the patient-strain associations, represent transmission

trends and help in the identification of exceptions in these trends.

While these existing programs can help epidemiologists make more informed deci-

sions, there is much scope for the application of information visualization to develop tools

for molecular epidemiology. There is the need to incorporate time in order to visualize

TB dynamics. Interactivity in visual representations can offer the ability to filter and

zoom in on individual or groups of strains and/or patients and view relevant statistics.

Graph visualizations can be used to represent social networks inferred from epidemiologi-

cal investigations. The application of visual analytics is a promising new direction for TB

epidemiology.

CHAPTER 3

Graph Visualization Background: Proximity Preservation

and Crossing Minimization

The quality of a graph visualization can be gauged based on how easily it can be

understood and interpreted. A drawing for graph G(V,E) is an embedding of the graph

in two dimensional space. Each vertex v ∈ V is represented as a distinct point, and

each edge e ∈ E is depicted by a line segment or an arc between the two nodes. If two

arcs share a common point, we say there exists a crossing at this point of intersection.

Studies have shown that reducing the number of edge-crossings is the most important

aesthetic for graph drawing [81]. Another important requirement of a visualization is

preservation of proximity relations. Proximity relations between nodes must be faithfully

represented so that the visualization conveys correct information about the relatedness

or nearness of nodes and preserves the “mental map” that the user may already have

based on relative dissimilarities and local structure. In this chapter, we describe these two

(sometimes contradictory) goals of graph embedding. In section 3.1, we describe various

strategies employed for crossing minimization in graphs, and in 3.2 we list several families

of techniques employed for depicting pairwise proximities in visualizations.

3.1 Minimizing Edge Crossings

Generating an optimal drawing with the least number of crossings is called the

crossing minimization problem. By reduction of the crossing minimization problem to

the optimal linear arrangement problem in [52], it was shown this problem is NP-hard.

The minimal number of crossings for a graph is known as the crossing-number, cr(G). The

crossing minimization problem and many of its variants are an important class of prob-

lems in graph theory [35]. One such variation is determining rectilinear crossing-number,

Portions of this chapter previously appeared as: (1) A. SHABBEER, C. OZCAGLAR, AND
K. P. BENNETT, Crossing minimization within graph embeddings, arXiv preprint arXiv:1210.,
(2012).
(2) A. SHABBEER, C. OZCAGLAR, B. YENER, ET AL., Preserving proximity relations and
minimizing edge-crossings in high dimensional graph visualizations, IEEE Symposium on Large
Data Analysis and Visualization (LDAV), Providence, RI, 2011, pp. 131-132.
(3) A. SHABBEER AND K. P BENNETT, Proximity preservation and crossing-minimization for
graph embedding, in The Snowbird Learning Workshop, 2012.

29

30

rcr(G), the minimum crossing-number for a graph if the edges must be straight lines.

This problem is also NP-hard. By Fàry’s theorem, [38], if a planar embedding exists for

a graph, then the graph can also be drawn using straight-line edges and no crossings. For

general graphs though, cr(G) ≤ rcr(G). No polynomial time algorithm exists to determine

the optimal embedding of a graph with minimal number of crossings. Some restricted ver-

sions of the crossing minimization problem such as 2-layer crossing minimization are also

NP-hard [65], however the reduced flexibility in layout makes solutions to these problems

easier in practice. Often however, there is a need for even greater flexibility in placement of

nodes such as when we want to optimize with respect to some other embedding objective

e.g. preserving proximity relations.

In addition to being a problem of great theoretic value and relevance, minimizing

edge-crossings has much direct practical value in generating graph drawings. Satisfying

this objective makes a clear and effective representation of underlying structure thus reduc-

ing cognitive load [81]. 1 The focus of this work is on generating graph layouts that satisfy

such aesthetic and functional requirements that arise in practice. In this background sec-

tion, we cover exact-crossing minimization techniques and planarization techniques, the

two main families of algorithms for minimizing crossings. We also briefly describe planar

embedding techniques for planar graphs in section 3.1.3.

The exact-crossing minimization problem is extremely hard, and therefore has long

computation times. Planarization techniques on the other hand have relatively fast run-

ning times. They are directly applicable to straight-line drawings. And since graph

drawings with straight lines and minimum edge-bends are desirable for understanding

and interpretation of graphs, they are very useful for generating graph drawings in prac-

tice. However, planarization techniques are complex to implement. However, both classes

of algorithms do not allow for much flexibility in placement of nodes implying limited

additional constraint satisfaction capability such as preserving proximity relations. Addi-

tionally, the topological transformations involved alter the user’s mental map of the data

that may be based on local structure or relative proximities.

3.1.1 Exact Crossing Minimization

While determining the exact minimum number of crossings is an NP-Hard prob-

lem, it is also a very difficult problem in practice. There exist some algorithms that

1It is also of interest in the computation of VLSI layouts, as every crossing of wires between
transistors on the chip leads to increase in cost.

31

can determine the minimum number of crossings for graphs that are sparse and have a

relatively small number of nodes(most recently upto a 100 nodes). For dense graphs,

the problem is increasingly difficult. In fact, the minimum number of crossings for com-

plete graphs with even a small number of nodes is unknown. The Rectilinear Crossing

Number Project has reported the rectilinear crossing numbers for Kn for n ≤ 17 http:

//www.ist.tugraz.at/staff/aichholzer/crossings.html. Here we describe Ordering-based

Optimal Crossing Minimization (OOCM), a recent successful integer linear programming

(ILP) approach that can find a provably optimal layout for sparse graphs with |V | ≤ 60

under an hour. However, as the size of the graph increases the percentage of graphs for

which the optimal layout can be found decreases. For example, for a graph of hundred

nodes, the percentage of graphs solved to optimality is 50%.

The OOCM method formulates crossing minimization as an ILP. The method uses a

Branch-and-Cut based algorithm that exploits known heuristics for efficient computation.

The algorithm models edge-crossings using indicator variables. For each pair of edges,

the corresponding indicator variable is set to 1 if the edges cross and set to 0 otherwise.

The crossing number polytope defined using these constraints in addition to Kuratowski

constraints [71] constitutes the feasible region.

Since, there are a large number of constraints involved, for efficiency the authors

propose the strategy of using a subset of the constraints to obtain a solution to the LP-

relaxation to the problem. The fractional solution obtained is used to identify violated

constraints not included in the initial iteration. Linear-time planarity-testing routines that

generate Kuratowski subdivisions of a graph as certificates of non-planarity are used to find

violated Kuratowski subdivisions. This guides the inclusion of only as many constraints

as necessary in the description of the feasible polytope. If the resulting solution after

incorporation of all violated constraints is still not integer feasible, a branching strategy

is employed. Subproblems are generated based on setting one variable. The reduced

subproblem is solved in lieu of the original problem.

Thus, this ILP approach defines a set of constraints that can be used towards de-

scribing the crossing number polytope and a strategy to incorporating these constraints

to develop an optimal solution to the crossing-number problem. However, exact crossing-

minimization is a difficult problem and this process of determining a solution is time-

consuming. In practice, heuristics based approaches as described in section 3.1.2 are

frequently used.

32

3.1.2 The Planarization Approach

In practice crossing minimization is often achieved by inexact approaches such as

the planarization approach [58]. The approach was first introduced in [7]. It is a two-

step, often heuristics-based, strategy. First, a planar subgraph of the original graph is

computed, followed by reinsertion of edges that introduce as few crossings as possible.

There are a variety of existing methods to solve each stage. Determining the maximum

planar subgraph is NP-hard. Instead of solving the optimum subgraph problem e.g. using

an exact branch-and-bound method [64], heuristics are often employed. A possible strategy

for obtaining a planar subgraph is as follows: beginning from an empty graph, one edge

is added at a time, and a (polynomial-time) planarity test is performed. If the addition

of the edge causes a crossing, the edge is removed.

3.1.3 Planar Embedding

A planar drawing of a graph is an embedding in two-dimensional space without

any edge crossings. Testing whether a graph is planar and finding a planar embedding

for a graph can be achieved in polynomial time. These polynomial time algorithms can

be broadly categorized as cycle-based and vertex-addition algorithms [101]. Cycle-based

embedding algorithms are based on the observation that a if a cycle exists, the graph can

be embedded such that the cycle causes two connected regions. In order to obtain a planar

drawing any other connected parts not including the cycle must be placed inside one of the

two regions completely. Note also that acyclic graphs e.g. forests are planar as well. The

other class of planar embedding algorithms, vertex-addition based algorithms as in [16],

begin with a subgraph of the original graph and instead of reintroducing edges, vertices

are re-added one at a time. At each step, planarity testing algorithms are performed.

Another related graph drawing problem is that of generating planar grid embeddings

that maps vertices to points on a grid, and edges to grid paths. A popular graph drawing

technique devised in [102], involves a linear time planar grid embedding algorithm that

also minimizes edge-bends (another important aesthetic criteria). The algorithm involves

generating a visibility representation (a mapping from vertices to horizontal segments and

edges to vertical segments), followed by transformation from the visibility representation

to an orthogonal embedding by substituting vertical segments with predefined structures

based on heuristics. Further transformations based on heuristics are performed to obtain

a bend-minimized orthogonal representation.

33

3.2 Proximity Preservation

It is desirable that proximity relations between nodes in the graph are represented

faithfully in the visualization. Proximity denotes nearness and may be defined/measured

in a variety of ways. In this section, we describe some methods that strive to preserve

proximity relations.

3.2.1 Multidimensional Scaling

Multidimensional Scaling (MDS) is a technique used for the analysis of similarities

and distances between a set of objects. It is used in a variety of applications, dimen-

sionality reduction, information visualization and analysis, and graph drawing to name

a few. Metric MDS can be described as a search for the co-ordinates of points embed-

ded in a reduced (usually Euclidean) space. The objective requires the points in this

reduced space to represent the original pairwise dissimilarities between the objects in the

original space[28]. A variation to this dimensionality reduction task, non-metric MDS, is

the search for an embedding in Euclidean space such that the Euclidean distances have

the same ordering as the original dissimilarities, i.e. only ordinal relationships need to

be preserved. Non-metric MDS is especially applicable when distances are unreliable or

simply unavailable and only the rank-order of the dissimilarity matrix contains significant

information. Isotonic regression is commonly used to find a configuration that minimizes

the discrepancy in the rank-order of the original dissimilarities and the pairwise distances

in the embedding[13]. In this study, we focus on metric MDS, since we need to visualize

the pairwise genetic distances in order to represent the genetic diversity in the MTBC

population.

3.2.1.1 Stress Majorization

In order to preserve the pairwise distances of all the nodes, we seek to minimize

the stress function that measures the deviation of the Euclidean distance between points

in the new reduced space and their corresponding dissimilarities. The stress function is

defined as follows:

stress(X) =
∑
i<j

wij(||Xi −Xj || − dij)
2 (3.1)

where Xi is the position of the node i in the embedding and dij represents the distance

(dissimilarity) between nodes i and j. The normalization constant wij = d−α
ij , α = 2

34

is commonly used. This constant can be tweaked to alter the emphasis on preserving

distances between nearby or faraway nodes as needed.

However this objective is non-convex, therefore most successful algorithms have been

methods to find approximate solutions, the most popular being stress majorization. Intro-

duced by deLeew [49], the majorization process iteratively minimizes quadratic approxi-

mations to the original stress function. Each approximation, known as the majorization

function, touches the original stress function at a single point (supporting point). The

majorization function is simpler to minimize than the original stress function and always

takes a value greater than or equal to the original function. This concept is illustrated in

Fig. 3.1 where the majorization function g(x, x0) touches the stress function f(x) at the

point x0. The minimum of this function, x1 is the next supporting point.

This iterative majorization method can be applied to minimizing the stress function

(3.1). The corresponding majorization function for (3.1) can be defined as follows [13]:

σ(X, X̄) =
∑
i<j

wijd
2
ij + Tr(X ′LwX)− 2Tr(X ′LX̄X̄) (3.2)

where the n× n weighted Laplacian is defined as follows

Lw
i,j =

⎧⎪⎨
⎪⎩
−wij i �= j,

∑
i �=k wik i = j

and

LX̄
i,j =

⎧⎪⎪⎨
⎪⎪⎩

−wijdijinv
(||X̄i − X̄j ||

)
i �= j,

−
∑
i �=j

LX̄
i,j i = j

where X̄ is the supporting point, the value of X in the previous iteration.

The advantage of this technique is that it involves minimizing a series of simple

quadratic functions resulting in a sequence of non-increasing function values. However,

the final solution may be a local minimum given the nonconvex nature of the problem.

3.2.2 Other Graph Embedding Methods

In this section, we list a few other frequently used methods that optimize layouts

with respect to some notion of proximity. While the definition of proximity varies, the

overall objectives are similar.

35

Figure 3.1: In each iteration, we minimize the majorization function
g(x, z) that is an upper bound on the original function f(x)
and touches it at a single point.

3.2.2.1 Force-directed Methods

These extremely popular and intuitive graph drawing algorithms are based on the

principle of treating a graph as a physical system comprising of particles representing

nodes that exert attractive and repulsive forces on each other [45, 96, 59, 8]. The goal is

to find a state of equilibrium where the forces balance each other out. Such algorithms

are also known as spring embedding methods, based on the analogy of treating nodes as

metal rings connected by springs (edges). Often these methods assume that all nodes exert

repulsive forces on each other, while nodes connected by edges also have attractive forces

between them. In [45], the authors discuss the effect of various possibilities of functions to

represent the forces. They recommend attractive forces be modeled as quadratic functions

proportional to the square of the distance between nodes and repulsive forces inversely

proportional to node distances in order to help the solution escape local minima. The

authors also provide a more efficient grid variant of the algorithm, where repulsive forces

are computed only between nodes lying in neighboring grids, or rather in a ball of radius =

2k from the node. Such a strategy of obtaining the equilibrium state in which attractive

and repulsive forces are balanced leads to the following two advantages: (1) Nodes that are

connected by edges and that are far away from each other experience very strong attractive

forces towards each other that act towards reducing the distance between the nodes.

Indirectly, this leads to a reduction in the number of edge-crossings. (2) The repulsive

36

forces prevent overcrowding and result in a uniform distribution of nodes. Methods for

obtaining fast approximations of spring embeddings have also been proposed [59].

3.2.2.2 Spectral Techniques

Spectral graph drawing techniques generate layouts based on the eigenvectors of a

matrix associated with the graph. Eigen decompositions of various associated matrices

such as the adjacency, Laplacian, the weighted Laplacian and distance matrix have been

used in previous works [68, 60, 17, 24]. In [101], the authors show that the eigen-projection

method based on using the low eigenvectors of the Laplacian (neglecting the lowest eigen-

vector) to represent the node co-ordinates is equivalent to the energy-minimization ap-

proach of force-directed methods. Using the low degree-normalized eigenvectors of the

Laplacian [68] was also related to desirable aesthetic criteria such as placing nodes with

high degree in the center while simultaneously trying to enlarge the scatter, generating

layouts with more evenly distributed nodes. Laplacian Eigenmaps [10] is a general dimen-

sionality reduction technique for data that uses concepts from spectral graph embedding

to visualize data such that locality information is preserved. The algorithm involves infer-

ring an adjacency matrix based on neighborhood information, generating weights based

on a heat kernel representing pairwise distances or the adjacency matrix, and finally com-

puting eigenvalues and eigenvectors of the weighted Laplacian calculated based on the

weights. The low eigenvectors are used to represent the node co-ordinates. Local struc-

ture is said to be preserved by this spectral embedding technique. Some other locality

preserving embedding techniques are listed in the next section. Most importantly, spectral

graph drawing methods have the advantage of rapid computation time and are therefore

especially useful for drawing very large graphs.

3.2.2.3 Locality Methods

While MDS creates a linear embedding of the data, there has been a vast body of

work on intrinsically low dimensional data that has a non-linear structure lying in high

dimensional space [86, 97, 62, 103]. While the data may belong to a high dimensional

space, the intrinsic dimensionality of the data may be significantly smaller. These are

vastly different methods that have the common objective of discovering the manifold

embedded in a reduced space.

One such method, Stochastic Neighborhood Embedding (SNE) is based on repre-

senting proximities in high-dimensional space as conditional probabilities and preserving

37

these probabilities in the reduced space. The Euclidean distances in high-dimensional

space are converted into probabilities as follows:

pj|i =
exp(−|xi − xj |2/2σ2

i)∑
k �=i exp(−|xi − xk|2/2σ2

i)

This term pj|i serves as a measure of similarity and represents the conditional probability

that node i would pick node j as its neighbor if neighbors were picked in proportion to

their probability density under a Gaussian centered at i. A similar conditional probability

qj|i is determined in the reduced space. The Kullback-Leibler divergence is used as the

loss function that seeks to minimize the discrepancy between the conditional probabilities

pj|i and qj|i. The authors of [62] recommend using a gradient descent strategy to minimize

this objective. A variation to this method, the t-SNE prescribes modeling the conditional

probability qj|i in the reduced space as a Student-t distribution with one degree of freedom,

in order to overcome problems of overcrowding. Locality preserving methods such as SNE

that faithfully represent the local structure have become popular for visualization tasks.

In this chapter, we described a wide array of existing proximity preservation tech-

niques, as well as methods for minimizing edge-crossings. However, the crossing minimiza-

tion approaches leaves little flexibility in the placement of nodes that can be utilized to

satisfy other equally or possibly more important requirements of the visualization such as

defined by proximity preservation objectives. Similarly, existing proximity preserving em-

bedding objectives do not directly address aesthetic criteria like minimizing edge-crossings

and node-overlaps. In the next chapter, we describe how some of the continuous embed-

ding objectives described in section 3.2 can be combined with constraints to minimize

edge-crossings. Toward this goal, we formulate new constraints for edge-crossings that

can easily be incorporated as penalties and used in conjunction with objective functions

for proximity preservation.

CHAPTER 4

Penalty Methods for Proximity Preservation and Crossing

Minimization in Graph Visualizations

We propose MAA, a novel approach to embedding heterogeneous data in high-

dimensional space characterized by a graph. The nodes of the graph are themselves data

points with associated metric distances defining proximity relations. Targeted towards

data visualization, the objectives of the embedding are two-fold: (i) preserve proximity

relations as measured by some embedding objective, and (ii) simultaneously optimize an

aesthetic criterion, no edge-crossings in the embedding, to create a clear representation

of the underlying graph structure. In this chapter we propose a new approach for ad-

dressing the later criteria that exploit the theorems of the alternative to re-express the

condition for no edge-crossings as a system of nonlinear inequality constraints. The ap-

proach has an intuitive geometric interpretation closely related to support vector machine

classification. While edge crossing minimization can be utilized in conjunction with any

optimization-based embedding objective, here we demonstrate the approach on multi-

dimensional scaling by modifying the stress majorization algorithm to include penalties

for edge crossings. An iterative penalty algorithm is developed and applied to creating

spoligoforests. As described in Chapter 1, spoligoforests are phylogenetic forests used to

visualize genetic relatedness betweens trains described by 55 biomarkers (spoligotype and

MIRU loci) and associated non-Euclidean distances. The method is also demonstrated

on a suite of randomly generated graphs with corresponding Euclidean distances that

have planar embeddings with high stress. The proposed edge-crossing constraints and

iterative penalty algorithm can be readily adapted to other supervised and unsupervised

optimization-based embedding or dimensionality reduction methods. The constraints can

be generalized to remove intersections of general convex polygons including node-edge and

Portions of this chapter previously appeared as: (1) A. SHABBEER, C. OZCAGLAR, AND
K. P. BENNETT, Crossing minimization within graph embeddings, arXiv preprint arXiv:1210.,
(2012).
(2) A. SHABBEER, C. OZCAGLAR, B. YENER, ET AL., Preserving proximity relations and
minimizing edge-crossings in high dimensional graph visualizations, IEEE Symposium on Large
Data Analysis and Visualization (LDAV), Providence, RI, 2011, pp. 131-132.
(3) A. SHABBEER AND K. P BENNETT, Proximity preservation and crossing-minimization for
graph embedding, in The Snowbird Learning Workshop, 2012.

38

39

node-node intersections.

4.1 Introduction

Graphs model relationships between entities, where the entities are represented by

nodes and the relations by edges. Frequently, the nodes of a graph represent objects that

have their own intrinsic features with associated distances or similarity measures. Often

we need a graph embedding that is a mapping of nodes from high-dimensional space to

low-dimensional vectors that preserve these pairwise distances. The embedding can serve

as a visualization tool to better understand underlying relationships in a dataset. The

quality of a visualization can be gauged on the basis of how easily it can be understood

and interpreted. Certain criteria have been identified that characterize a good visualiza-

tion. As described in Chapter 3, for graphs, it is desirable to minimize edge crossings, a

challenging problem in itself [65, 76]. While polynomial-time planarity testing algorithms

exist, determining the minimum number of crossings for a graph is NP-complete [52].

For general data embedding, the desired quality is frequently expressed as a function of

the embedding and then optimized. For example in Multidimensional Scaling (MDS) (or

equivalently the Kamada-Kawai model in force-directed graph placement (FDP)), the goal

is to produce an embedding that minimizes the difference between the actual distances

and Euclidean distances between all nodes in the embedding. Thus, a natural question for

such heterogeneous data that comprises of data points characterized by features and by an

underlying graph structure [49, 33] is how to optimize the embedding criteria while mini-

mizing the number of edge crossings in the embedded graph. The principle contribution

of the work in this chapter is to express edge-crossing minimization as a continuous opti-

mization problem so that both the embedding criteria and aesthetic graph visualization

criteria can be simultaneously optimized.

The motivating heterogenous data/graph application for this work is visualization

of phylogenetic forests of bacteria (spoligoforests) described in Chapter 1. Each node

represents a genetic strain of Mycobacterium tuberculosis complex (MTBC) and each edge

represents a putative evolutionary change. Each node or strain has a genetic fingerprint

and a natural non-Euclidean distance that can be defined to every other strain even if

they are not connected in the underlying graph (phylogenetic forest). Similarly, in a Web

hyperlinks graph, each node may be a web page and the edge may represent a hyperlink

between the pages. Each webpage is a document with intrinsic properties, so there is an

40

associated distance or similarity measure between nodes even if no link exists between

them.

Existing embedding and graph drawing methods typically do a good job at accu-

rately capturing distances or drawing planar graphs but not both as described in Chapter

3. Figure 4.1 shows the visualization of planar spoligoforest for the LAM subfamilies

of MTBC created by the proposed approach and 3 other embedding methods: (a) the

proposed approach that preserves pairwise distances while minimizing edge crossings; (b)

MDS using stress majorization as implemented by Graphviz Neato; (c) Graphviz Twopi

- a planar radial graph algorithm http://www.graphviz.org/ and (d) Spectral embedding

technique using the weighted Laplacian of graph as described in Laplacian Eigenmaps

[10] for the original adjacency of graph. In (c), the radial graph is visually appealing

but inaccurate, especially when the graphs are disconnected, because genetically similar

strains belonging to the same TB sublineage indicated by identically colored nodes but

different connected components are placed far apart. In (b), the distances between strains

match the sublineage structure but there are many edge crossings. In (d) while genetically

similar groups cluster together, there are edge-crossings and the genetic relatedness be-

tween all pairs of strains is less evident. The proposed approach in (a) represents distance

correctly in a naturally emerging radial structure without any edge crossings in the layout

by optimizing the MDS embedding or dimensionality reduction objective with additional

edge cross penalties.

The key theoretical insight of the chapter is that the condition that two edges do not

cross is equivalent to the feasibility of a system of nonlinear inequalities. In Section 4.2,

we prove this using a theorem of the alternative. The transformed system ensures that the

two edges are separated by a linear hyperplane. Thus the edge-crossing constraint reduces

to a classification problem which is very closely related to support vector machines (SVM).

The system of inequalities can then be relaxed to create a natural penalty function for each

possible edge crossing. This non-negative function goes to zero if no edge crossings occur.

This general approach is applicable to the intersection of groups of convex polyhedrons

including nodes represented as boxes and edges represented as bars. The approach is

a distinct and important departure from prior proximity preserving embedding methods

that ignore crossings or that employ heuristics to generate layouts that avoid crossings

[45, 33, 110] as well as crossing-minimization approaches as described in Chapter 3 that

do not allow for flexibility in the placement of nodes. Spectral graph drawing methods

41

Figure 4.1: Embeddings of spoligoforests of LAM (Latin-American-
Mediterranean) sublineages. Graph (c) is a planar embed-
ding generated using Twopi, the radial layout is visually ap-
pealing, but genetic distances between strains are not faith-
fully reflected. Graph (d) generated by spectral decomposi-
tion of the weighted Laplacian preserves local structure but
has edge-crossings. Graph (b), that optimizes the MDS ob-
jective and generated using Neato, preserves proximity re-
lations but has edge-crossings. In graph (a), the proposed
approach eliminates all edge crossings with little change in
the overall stress. Note how in graph (a), the radial struc-
ture emerges naturally when both distances and the graph
structure are considered.

42

like [68] generate embeddings based on the eigenspace of the Laplacian matrix. The

Laplacian Eigenmap uses the eigenvectors of the weighted Laplacian for dimensionality

reduction such that locality properties are preserved. However, such methods do not

optimize aesthetic criteria such as minimizing edge-crossings.

In Section 4.3, we explore how edge-crossing constraints can be added to stress

majorization algorithms for MDS or FDP. We develop an algorithm which simultane-

ously minimizes stress while eliminating or reducing edge crossings using penalized stress

majorization. The method solves a series of unconstrained nonlinear programs in MAT-

LAB. We demonstrate the method on graph embedding problems with associated met-

ric distances. We first demonstrate the approach on a compelling problem involving

genetic distances in tuberculosis molecular epidemiology. We provide further discus-

sion of measures of genetic distances for MTBC biomarkers in Chapter 5. The graph-

ical results are shown for spoligoforests drawn using a set of fifty-five biomarkers. The

method found planar graph embeddings with smaller stress than those generated using

the state-of-the-art NEATO algorithm (MDS). We then demonstrate the approach on

randomly generated high-dimensional graphs designed to have planar embeddings with

high stress. The results show that the proposed approach can produce two-dimensional

embeddings with minimal edge-crossings with little increase in stress. Additional il-

lustrations as well as animations of the algorithm illustrating how the edge crossing

penalty progressively transforms the graphs as well are provided in the appendix and

at http://www.cs.rpi.edu/∼shabba/FinalGD/.

The following notation is used: for a vector x in R
n, x+ denotes the vector in R

n

with components (x+)i = max(xi, 0), i = 1..n, the 2-norm and 1-norm of x will be denoted

by ||x||2 and ||x||1 respectively.

4.2 Continuous Edge-Crossing Constraints

We show how edge-crossing constraints can be expressed as a system of nonlinear

inequalities through the introduction of additional variables for each edge crossing. Ex-

pressing the constraint that two edges must not cross as a system of nonlinear equalities

is a key non-obvious first step for developing a continuous objective function to minimize

edge crossings. Each point on an edge can be represented as the convex combination of the

extreme points of the edge. Consider edge A with end points a = [ax ay] and c = [cx cy]

and edge B with end points b = [bx by] and d = [dx dy]. The matrices A and B contain

43

the end or extreme points of the edges A and B respectively. Any point in the intersection

of edge A and B can be written as a convex combination of the extreme points of A and

convex combination of the extreme points of B. Therefore, two edges do not intersect if

and only if the following system of equations has no solution:

� ∃ δA and δB such that A′δA = B′δB e′δA = 1 e′δB = 1 δA ≥ 0 δB ≥ 0 (4.1)

where e is a vector of ones of appropriate dimension and A =

⎡
⎣ax ay

cx cy

⎤
⎦ andB =

⎡
⎣bx by

dx dy

⎤
⎦.

The conditions that two given edges do not cross, i.e. that (4.1) has no solution, are

precisely characterized by using Theorems of the Alternative that states that the linear

system Du ≥ 0, d′u > 0 has no solution u if and only if the system D′v = d, v ≥ 0 has a

solution v.

Theorem 1 (Conditions for no edge crossing). The edges A and B do not cross if and

only if there exists u, α and β,

such that Au ≥ αe Bu ≤ βe α− β > 0. (4.2)

Proof. By Theorems of the Alternative, (4.2) has a solution if and only if the following

system has no solution

A′δA −B′δB = 0, e′δA = 1 e′δB = 1 δA ≥ 0 δB ≥ 0. (4.3)

System 4.3 has no solution if and only if the convex combination of the extreme points of

A and B do not intersect.

Allowing A and B to be of an arbitrary number of extreme points, the following

corollary can be easily proven to apply to intersections between convex polyhedrons ex-

pressed as a convex combination of their extreme points.

Corollary 1 (Conditions for no intersection of two polyhedrons). Consider the polyhe-

drons A = {x|x = A′δA, e′δA = 1, δA ≥ 0} and B = {x|x = B′δB, e′δB = 1, δB ≥ 0}. The

polyhedrons do not intersect, A⋂B = ∅, if and only if ∃u and γ such that

Au− γe ≥ e

Bu− γe ≤ −e
(4.4)

44

(a) (b)

Figure 4.2: In (a) Edge A from a to c and edge B from b to d do not cross.
Any line between xu−γ = 1 and xu−γ = −1 strictly separates
the edges. Using a soft margin, the plane in (b) xu − γ = 0
separates the plane into half spaces that should contain each
edge.

Therefore, two edges (or more generally two polyhedrons) do not intersect if and

only if

0 = minu,γ ||(−Au+ (γ + 1)e)+||qq + ||(Bu− (γ − 1)e)+||qq
where (z)+ = max(0, z) for q = 1 or q = 2.

l (4.5)

The minimization function in (4.5) provides a natural function for penalizing edges

that do cross. Much like soft-margin SVM classification, two edges (or more generally

two polyhedrons) do not intersect if and only if there exists a hyperplane (xu′ = γ) that

strictly separates the extreme points of A and B. If the edges do not cross, then the

optimal objective of (4.5) will be 0; while it will be strictly greater than 0 if the edges do

cross. As in SVM, (4.5) can be converted into a linear or quadratic program depending on

the choice of q = 1, or q = 2 respectively Figure 4.2 illustrates that the no-edge-crossing

constraint corresponds to introducing a separating hyperplane and requiring each edge to

lie in opposite half spaces.

4.3 Stress Majorization with Edge-Crossing Penalization

Edge-crossing constraints and penalties are a practical and flexible paradigm that

can be used directly to minimize edge crossings as part of graph embedding optimization

algorithms. Many algorithms are possible depending on the variant of the formulation of

the penalty terms used. In this work, we used the differentiable least-squares loss for the

penalty terms in (4.7). For � edge objects there are l(l−1)
2 possible intersections and O(�2)

penalty terms. However, an optimized embedding will typically only produce a fraction

of the possible edge crossings. Thus this suggest an efficient iterative penalty approach

45

because it need only deal with the small set of edge crossings that actually occur during

the course of the algorithm.

Using a multi-objective penalty approach, edge crossing minimization can be incor-

porated into any optimization-based embedding or graph drawing formulation. In this

chapter, we do multi-objective minimization combining edge-cross minimization with the

stress function given by the highly-successful and widely-used MDS [28] objective:

stress(X) =
∑
i<j

wij(||Xi −Xj || − dij)
2 (4.6)

Here Xi is the position of the node i in the embedding and dij represents the distance

between nodes i and j. The normalization constant wij = d−α
ij , α = 2 is used. The

stress function measures the deviance of the Euclidean distance between points in the

new reduced space and their corresponding defined m-dimensional proximities. Thus, by

minimizing the stress function, we aim to preserve the pairwise distances of all the nodes.

Note, however, that the proximities in the high-dimensional space may be non-Euclidean

in practice.

The SMACOF [30, 49] algorithm for minimizing stress is based on iterative ma-

jorization as described in Chapter 3. The method iteratively minimizes an auxillary

function σ(X, X̄) which is a quadratic approximation of the stress function such that

stress(X) ≤ σ(X, X̄) always holds, and σ touches the surface of the stress(X) function

at the fixed point X̄ (supporting point). Recall σ was defined in (3.2).

The addition of 2-norm edge crossing penalties produces

min
X,u,γ

σ̄(X,u, γ, X̄) = σ(X, X̄) +

m∑
i=1

ρi
2
[||(−Ai(X)ui + (γi + 1)e)+||2

+||(Bi(X)ui − (γi − 1)e)+||2]
(4.7)

The iterative penalty method given in Algorithm 2 progressively increases the penalty

parameters on each potential edge crossing until the algorithm converges. Algorithm 2 was

implemented in MATLAB using the Optimization toolkit. The initial solution X1 is cal-

culated using stress majorization. The QP solver quadprog is used to solve QP (4.5). The

BFGS algorithm as implemented in the MATLAB function fminunc is used to solve the

edge-crossing penalized stress function. The following parameters are used: ε2 = 1e − 3,

ε = 1e− 6, κ = 4, ρmin = Stress(X1)/κ, ρinc = 1.1 and ρmax = 106.

46

The algorithm begins by finding the stress-majorization solution X1 (either by using

this algorithm with no penalties or by using the NEATO package) and then refining the

solution by introducing penalties for crossed edges. At each iteration, the edge crossing

detection QP (4.5) is solved to both detect edge crossings and calculate the hyperplanes

used in the edge-crossing penalties. For crossed edges, the penalties for those edge pairs

are increased at each iteration until a maximum penalty is reached. The penalty is in-

creased slowly to avoid problems with ill-conditioning. For this work, we emphasized

edge crossing minimization so ρmax is set high. But ρmax can be reduced to examine the

trade-offs between the embedding and edge-crossing minimization objectives. Computa-

tional efficiency is gained due to the fact that edges that never cross in the course of the

algorithm have a penalty of 0. A formal analysis of the computational complexity of this

algorithm is left for future work.

program 2 MAA: Stress majorization with edge-crossing penalties

Input: Pairwise distances, Adjacency matrix
while ||Xj −Xj−1|| ≥ ε and ∂

∂X
(σ̄(Xj, u, γ,Xj−1)) ≥ ε and edge crossings exist

do
while ||Xj −Xj−1|| ≥ ε2 and edge crossings exist do
for each edge pair i = 1, . . . ,m do
Find the crossed edges by solving QP (4.5) for edge pair i to get (ui, γi, zi)

if ||zi|| ≥ ε then
ρi ← ρmin for each new crossing i

end if
end for{X-phase}
Z ← Xj

LZ ← LXj

Xj+1 ← argmin(σ(X, X̄)+
∑m

i=1
ρi
2
[||(−Ai(X)ui+(γi+1)e)+||2+||(Bi(X)ui−

(γi − 1)e)+||2])
j ← j + 1

end while
Increase penalties for edges that remain crossed: ρi = min(ρinc × ρi, ρmax)

end while

For each fixed value of ρ, Problem 4.7 is solved using an algorithm that alternates

between minimizing with respect to X and u. For the X phase, a modified version of

“Stress Majorization” [49] is used to optimize (4.7). The MATLAB BFGS optimization

algorithm “fminunc” is used to optimize a quadratic upper bound on the stress plus the

edge crossing penalties for a fixed u. In the u phase, the soft margin separating plane (u)

47

for each edge pair as defined by X is determined by solving (4.5). An inexpensive heuristic

is used to reduce the number of edge-pairs checked (no crossing possible if bounding boxes

enclosing edges do not intersect). The penalties for crossed edges are driven higher until

no edge crossings exist or the problem converges; thus, most edge pairs have penalty

parameter ρi = 0 since they never cross.

4.4 Results and Interpretation

Our approach was evaluated on a real-world applicatiom (visualization of spoligo-

forests) and challenging random graphs with non-Euclidean and Euclidean distances re-

spectively.

4.4.1 Embedding of Spoligoforests with Non-Euclidean Distances

To demonstrate the performance of the approach, we return to the motivating ap-

plication: visualization of spoligoforests [84] created from DNA fingerprints of MTBC. We

examine the visualization of spoligoforests with non-Euclidean distance matrices defined

using spoligotype and MIRU type (MTBC biomarkers) for four problems as summarized

in Table 4.1 and shown in Figure 4.1 and the supplementary material. Each node of the

spoligoforest corresponds to a distinct genotype of MTBC as determined by two types of

DNA fingerprints: 43 spoligotypes and 12 MIRU. The spoligoforest is determined as in

[89] and is always planar by definition since it consists of multiple trees. The distance is

measured by the number of distinct changes in the spoligotypes and MIRU. Thus it is not

a Euclidean distance. MAA was initialized using the MDS produced by the stress ma-

jorization algorithm and run for all edge crossing penalties until convergence. All stresses

are scaled such that the MDS stress produced by NEATO is 1.

The table shows the efficacy of the method in optimizing the multiple objective

For each problem, we present four visualizations of the spoligoforest drawn using: a)

MDS+edge-crossing penalties, (b) MDS alone using stress majorization as implemented in

Graphviz Neato (c) Planar Embedding as produced by radial layout producing algorithms

Graphviz Twopi. (d) Laplacian Eigenmap embedding based on weighted Laplacian. In

every case, the proposed method can dramatically reduce the edge crossings, while making

only minor changes in the total stress (values = 1 are the same as the stress found by

MDS as implemented in NEATO). Note while the original graph is in a 55 dimensional

space, the data is inherently lower dimensional, thus many embeddings are possible with

48

Table 4.1: Comparison of the stress and number of crossings in embed-
dings generated by the proposed approach MAA that opti-
mizes with respect to proximity preservation as well as edge-
crossings with (i) MDS using Stress Majorization (as imple-
mented in Neato) that minimizes proximity stress, but not
edge-crossings(ii) Planar Embeddings (drawn using Twopi for
spoligoforests, original embeddings for random graphs) that
minimize edge crossings but not stress (iii) Laplacian Eigen-
maps that minimize an alternative proximity preservation ob-
jective only. All stress results are normalized so that the
NEATO stress is 1. Results shown for three MTBC spoligo-
forest datasets.

Spoligoforest |V| |E| MAA MDS Twopi Lap. Eig.
LAMs 68 66 stress 0.91 1.0 3.12 9.75
LAMs 68 66 # cross. 0 43 0 37
M. africanum 97 89 stress 0.99 1.0 6.32 15.75
M. africanum 97 89 # cross. 0 11 0 35
H, X, LAM 45 29 stress 0.90 1.0 8.64 18.92
H, X, LAM 45 29 # cross. 0 9 0 9
SpolDB4 151 138 stress 1.06 1.0 3.32 12.5
SpolDB4 151 138 # cross. 2 51 0 144

similar stress. In three of the four graphs, MDS+edge-crossing penalties actually produced

graphs with less stress than the MDS results returned by NEATO, illustrating that edge-

crossing penalties may help guide stress majorization to a more desirable local minima with

little or no change in the overall stress. The pictures produced are more informative and

accurate than those produced by all existing spoligoforest visualization software that use

Graphviz algorithms, including Twopi, that disregards genetic distances available in the

heterogeneous data [84, 89] as well as the visualization produced by Laplacian Eigenmaps.

The results reported were performed on a Lenovo Thinkpad W500 laptop with 4GB RAM.

The proposed approach can be used to dynamically remove edge crossings in an existing

graph. An animation of the proposed algorithm altering the initial MDS solutions can be

viewed in the supplementary material.

4.4.2 Randomly Generated Planar Graphs

In this section, we demonstrate the performance of the method on more complex

graphs for which there exists some planar embedding. We illustrate how graphs in high-

49

(a) (b)

Figure 4.3: Embeddings for randomly generated graph in R
7 with

50 nodes and 80 edges using (a) Stress majorization
(stress=131.8, number of crossings=369) and (b) MAA
(stress=272.1, number of crossings=0). The original planar
embedding had stress= 352.5.

dimensional space can be clearly and accurately represented in R
2 while preserving pair-

wise distances and minimizing edge-crossings.

In order to evaluate the performance of the algorithm we generate random graphs

that have at least one known planar embedding. However, this known planar embedding

violates the proximity preservation requirement. |V | points were generated in R
n (for

n=7, 15 and 20). The Euclidean distances between each pair of points was determined.

The points were projected in R
2 and ‖E‖ edges were introduced between nodes so that

planarity is preserved, as per the method in [31] using a Markov Chain Algorithm. Since

the planar embedding has high stress and is not truly representative of the proximity

relations in the data, it is not the most desirable embedding. By relaxing the requirement

for 0 crossings, we can find alternate embeddings that preserve stress with significant

reduction in edge-crossings. Our multi-objective approach finds such embeddings that

achieve a balance between the two often contrary objectives.

Figure 4.3 shows the graph embedding produced using only the MDS objective as

compared with applying edge-crossing penalties.

The results presented in Fig. 4.4 are from of a set of 160 randomly generated

graphs with 50 to 120 nodes and 40 to 160 edges averaged for all graphs with the same

|E|. Optimizing with respect to the stress alone (MDS), results in embeddings that have

edge-crossings. The Laplacian Eigenmap embedding that is optimized with respect to a

different proximity preservation objective aimed at preserving local structure also has a

large number of crossings. Force-directed placement methods denoted by Spring, FM3

50

(a
)

(b
)

F
ig
u
re

4
.4
:
C
o
m
p
a
ri
so

n
o
f
(a
)

st
re
ss

a
n
d

(b
)

n
u
m
b
e
r

o
f
cr
o
ss
in
g
s

in
e
m
b
e
d
d
in
g
s

fo
r

ra
n
d
o
m
ly

g
e
n
e
r-

a
te
d

g
ra

p
h
s
w
it
h

5
0
-1
2
0
n
o
d
e
s
a
n
d

4
0
-1
6
0
e
d
g
e
s
g
e
n
e
ra

te
d

u
si
n
g
6
d
iff
e
re
n
t
a
lg
o
ri
th

m
s
M

A
A
,

N
e
a
to

(S
tr
e
ss

M
a
jo
ri
z
a
ti
o
n
),

L
a
p
a
ci
a
n
E
ig
e
n
m
a
p
s,

S
p
ri
n
g
,
O
rt
h
o
g
o
n
a
l,
F
a
st

M
u
lt
ip
o
le

M
u
lt
il
e
v
e
l

M
e
th

o
d

(F
M

3
).

51

Figure 4.5: Plot of final edge-crossings vs initial edge crossings in MAA
embeddings for 160 randomly generated graphs with 50 nodes
and 80 edges. The size and color of the nodes represents
the ratio of final stress to the stress majorization solution
as found by Neato. MAA can produce embeddings with a
significant reduction in the number of crossings with small
increase in stress.

[45, 59] and planar grid embedding techniques like ORTH [102] have a low number of

edge-crossings but can have high stress. Alternate embeddings are generated by MAA that

preserve proximity relations while keeping the number of edge-crossings low, thus repre-

senting the underlying graph structure (adjacency and connectivity information) clearly.

Figure 4.5 illustrates the performance of the algorithm in terms of final stress and number

of crossings in MAA embeddings. The embeddings found for a majority of the graphs

have marginal increase in stress as compared to the MDS solution, but with a significant

reduction in number of crossings as indicated by the blue dots.

4.5 Discussion

We developed a novel multiobjective approach to simultaneously optimizing preser-

vation of proximity relations and aesthetic criteria for heterogeneous graph data by in-

troducing a fundamentally new paradigm for elimination of edge crossings in graph em-

beddings. This work demonstrates how edge-crossing constraints can be formulated as a

system of nonconvex constraints. Edges do not cross if and only if they can be strictly

52

separated by a hyperplane. If the edges cross, then the hyperplane defines the desired half-

spaces that the edges should lie within. The edge-crossing constraints can be transformed

into a continuous edge-crossing penalty function in either 1-norm or least-squares form. We

developed a stress majorization algorithm with edge-crossing penalties. Computational

results demonstrate that this approach is quite practical and tractable. Continuous opti-

mization methods can be used to effectively find local solutions, a very desirable outcome

since drawing graphs with a minimum number of edge crossing is NP-Hard. Successful

results were illustrated on problems of the epidemiology of tuberculosis with genetic dis-

tances and phylogenetic forests that were not adequately addressed using existing planar

graphing approaches since they give undesirable results on disconnected graphs. Inter-

estingly, MAA, i.e. MDS with edge crossing penalties actually found embeddings with

less stress and no edge crossings than the NEATO algorithm. This may be caused by the

fact that the MTBC data is from a 55 dimensional space and the MDS stress is highly

nonconvex with many possible locally optimal embeddings existing with similar stress,

thus the edge crossing constraints may help guide the algorithm to a more desirable local

solution both from a stress and aesthetic point of view. Results on high dimensional ran-

dom graphs with planar embeddings show that the method can find much more desirable

solutions from a visualization point of view with only relatively small changes in stress.

This work opens up many avenues for future research at the intersection of ma-

chine learning and data visualization. Here we focused on elimination of edge cross-

ings and stress optimization (MDS). The general multiobjective approach is applicable to

any optimization-based graph drawing, dimensionality reduction or embedding methods

[103, 33] used for data visualization in both supervised and unsupervised learning. Also,

the theorems and algorithms are directly applicable to the intersection of convex polygons

in general within embeddings of arbitrary dimensions. Thus, the method can also be used

to eliminate node-node overlaps and node-edge crossings. Our work was limited to planar

graphs, but the penalty approach can be used to reduce crossings in more general graphs.

Since the edge-crossing constraints are very closely related to linear SVM, all the different

classification and regularization loss functions could be used to produce crossing-penalty

functions with different aesthetic effects and algorithmic ramifications. For example, max-

imum margin separation can enforce minimum spacing between objects. This work used

the MATLAB function “fminunc” as its primary workhorse – which inherently limits the

problem size. In reality, there is a great potential for making highly scalable special pur-

53

pose algorithms for edge-crossing-constrained graph embeddings. While the method was

motivated by the need to preserve pairwise distances in heterogeneous graph data as de-

fined by the MDS objective, it can be used to eliminate edge-crossing with any embedding

objective. In the next chapters, we explore some of these promising research directions.

We describe one such such scalable algorithm Alternating Directions of Multiplier Methods

(ADMM) that can be potentially adapted to this problem in Chapter 5.

CHAPTER 5

Alternating Directions of Multiplier Methods for Visual

Analytics

In this chapter, we discuss the algorithm MAA+ for generating spoligoforest lay-

outs, an improvement on MAA described in Chapter 4. Proximity preserving embedding

objectives with penalties for intersection of objects, such as the one presented in Chap-

ter 4, are nonconvex and nonsmooth (due to L1-penalties). The subproblem of finding

the separating planes is nonsmooth as well. There is a need for a scalable algorithm

to solve these problems with nonsmooth objectives. We propose the use of Alternating

Directions of Multiplier Methods (ADMM) algorithm as a simple and elegant solution.

In section 5.1, we provide a background of the ADMM framework, followed by section

5.2, where we provide a description of the ADMM algorithm applied to the constrained

graph embedding problem. We show how the ADMM framework could be used to solve

both the x-subproblem and the u-subproblem. The MAA+ algorithm uses ADMM to solve

the x-subproblem. For the u-subproblem, the algorithm uses closed form approximations

described in Chapter 7. In section 5.3, we describe computational experiments that show

the efficacy of the MAA+ method.

5.1 ADMM Framework

In this section, we discuss the Alternating Directions of Multiplier Methods (ADMM)

algorithm, a method well suited to dealing with massive optimization problems with non-

smooth objectives or constraints. Nonsmooth problems are difficult because there are

multiple nonunique subgradients that do not necessarily provide information about a di-

rection of improvement. Various approaches are used to handle nonsmoothness such as

bundle methods, generating smooth approximations [73, 77]. Bundle methods essentially

Portions of this chapter previously appeared as: (1) A. SHABBEER, C. OZCAGLAR, AND
K. P. BENNETT, Crossing minimization within graph embeddings, arXiv preprint arXiv:1210.,
(2012).
(2) A. SHABBEER, C. OZCAGLAR, B. YENER, ET AL., Preserving proximity relations and
minimizing edge-crossings in high dimensional graph visualizations, IEEE Symposium on Large
Data Analysis and Visualization (LDAV), Providence, RI, 2011, pp. 131-132.
(3) A. SHABBEER AND K. P BENNETT, Proximity preservation and crossing-minimization for
graph embedding, in The Snowbird Learning Workshop, 2012.

54

55

approximate the subdifferential of the objective by collecting subgradient information in

successive iterations and using this “bundle” to construct a piecewise linear approxima-

tion of the original objective. Such methods represent alternate methods to solving the

constrained embedding problem. However, we propose the use of Alternating Directions

of Multiplier Methods (ADMM) algorithm that elegantly handles nonsmoothness by pro-

viding an iterative solution where the computation of each iterate has a simple closed-form

solution.

In the rest of this section we look at some of the foundations of the ADMM algo-

rithm. The ADMM algorithm was originally designed so as to combine the benefits of

fast convergence rates offered by methods of multipliers and the potential for distribution

of the dual decomposition method [15]. The motivation and algorithmic framework of

ADMM are described below.

The concepts underlying Augmented Lagrangian methods (also known as multiplier

methods) form the basis for ADMM [12]. The fundamental strategy of multiplier methods

is to generate a sequence of approximate problems which is equivalent to the original con-

strained optimization problem. Each approximate problem is an unconstrained optimiza-

tion problem and is much easier to solve than the original. Moreover, each approximate

problem need not be solved to perfect accuracy, and solutions to each iteration are used

to guide the solution to the subsequent iteration. Multiplier methods are related to the

penalty methods used in Chapter 4, that convert a constrained optimization problem into

an unconstrained one by applying a large penalty on any infeasible solutions. However,

multiplier methods reduce the possibility of ill-conditioning by explicitly including an es-

timate of the Lagrange multiplier y in the formulation of the function to be minimized-

the augmented Lagrangian. The augmented Lagrangian of the equality-constrained opti-

mization problem defined in (5.1) is formulated as in (5.2).

min.
x

f(x)

s.t. Ax = b
(5.1)

with variable x ∈ R
n and A ∈ R

m×n and f : Rn → R is convex.

Lρ(x, y) = f(x) + y′(Ax− b) +
ρ

2
||Ax− b||2 (5.2)

Here ρ > 0 is the penalty parameter and essentially defines the weight that we assign to

56

constraint satisfaction relative to minimization of the original objective f [78].

The intuition behind the methodology of multiplier methods whereby minimizing

the sequence of augmented Lagrangians (5.2) is equivalent to minimizing the original

function (5.1) is as follows. For a bounded series yk and ρ → ∞, the additional terms

y′(Ax− b) + ρ
2 ||Ax− b||2 that are augmented with the original function f are zero. While

these additional terms tend to∞ if the constraints are not satisfied. It can be shown that

under some assumptions e.g. f is a continuous function defined over a closed set, the limit

point of xk for k = 1 . . . obtained by minimizing Lρ(x, y
k) for a bounded series yk and

ρ→∞ is equivalent to the global minimum of (5.1).

The working of the method of multipliers can also be explained as follows. Consider

the augmented dual function to be defined as

g(y) = inf
x
Lρ(x, y) (5.3)

and therefore the dual problem is

maximize
x

g(y)

The multiplier method involves solving the dual problem using a gradient ascent approach

(dual ascent). The dual optimal point y∗ can be used to obtain the primal optimal point

as follows:

x∗ = argmin
x

Lρ(x, y
∗) (5.4)

Fundamentally, the multiplier method is an iterative algorithmic framework in which

the following two steps are performed in each iteration. First, we determine

xk+1 = argmin
x

Lρ(x, y
k) (5.5)

Then the gradient of the dual function is determined using the updated xk+1 value. The

gradient ∇g(y) = Axk+1 − b is used to update the dual variable via gradient ascent using

a step-size of α.

yk+1 = yk + αk(Axk+1 − b) (5.6)

Steps (5.5) and (5.6) are performed for k = 1 . . . n until convergence criteria are

met. In successive iterations of this method the primal residual Ax− b converges to zero

57

resulting in the optimal solution.

Note, it can be shown that using a step-size α = ρ makes each iterate dual feasible.

Note that the optimality conditions of the original problem (5.1) are, primal feasibility:

Ax∗ − b = 0 and dual feasibility: ∇f(x∗) + A′y∗ = 0. By definition, xk+1 minimizes

Lρ(x, y
k). Therefore,

∇xf(x
k+1) +A′(yk + ρ(Axk+1 − b)) = 0 (5.7)

If a step-size of ρ is used in the dual variable update, then by substituting in (5.7),

∇xf(x
k+1) +A′yk+1 = 0

Therefore, using a step-size of ρ makes the next iterate (xk+1, yk+1) is dual feasible.

The ADMM algorithm is a modification of the multiplier method to help overcome

the following disadvantage: Even when f is separable the augmented Lagrangian is not.

The traditional multiplier method approach involves minimizing with respect to all the

primal variables jointly. ADMM is designed to take advantage of the separable structure

using an alternating strategy as follows. Let the problem be expressed as below, by

splitting the original variable x into x and z,

min.
x,z

f(x) + g(z)

s.t. Ax+Bz = c

(5.8)

Instead of performing the primal variable update with respect to x and z jointly as

specified by multiplier methods strategy, x and z are updated in an alternating fashion.

The x− update is performed for a fixed z from a previous iteration, and similarly for the

z − update. Therefore, each update step involves solving a simpler optimization problem

rather than jointly minimizing with respect to both x and z. These iterations are repeated

until convergence.

for k = 1 . . . until convergence do

xk+1 = argmin
x

Lρ(x, z
k, yk)

zk+1 = argmin
z

Lρ(x
k + 1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − b)

end for

58

Another potential advantage of ADMM is its foundations in the dual decompo-

sition method. In this work, we decomposed the problem into several small problems:

the x-subproblem and several small u-subproblems. Solving for each of these variables in-

dependently makes the computation significantly easier as compared to solving a single

optimization problem with respect to all variables jointly. Dual decomposition is a variant

of the dual ascent, and used when the objective f is separable i.e. can be expressed as

f(x) =
∑n

i=1 fi(xi), where xi are subvectors of x. The x-minimization step can also be

split into n separate problems that are independent and can be solved in parallel making

computation more efficient. Since it allows for distributed optimization it is possible to

develop solutions capable of handling a large numbers of groups of independent constraints

in parallel. This parallelization of these tasks offers an interesting future direction.

In the following section we describe solutions to the constrained embedding problem

using the ADMM framework described above. We discuss the suitability of this algorithm

to the two subproblems: (i) finding separating hyperplanes and (ii) minimizing a penalized

objective to obtain layouts with low stress and edge-crossings.

5.2 ADMM for Constrained Graph Embedding

In this section, we provide a description of the application of ADMM to the con-

strained graph embedding problem. We use the the problem developed in Chapter 4 as

an example. Both subproblems in the alternating scheme described in Chapter 4 can

be solved using ADMM. Recall that the first problem involves computing the separating

planes as defined by solving (4.5) and is described in section 5.2.1. The second problem,

described in section 5.2.2, involves computing the layout with minimal stress subject to

constraints defined by the previously determined separating planes.

5.2.1 ADMM for Finding Separating Planes

We can rewrite (4.5) in ADMM form 5.8 and determine the separating plane for two

edge objects as follows

min
z,x

e′z+

s.t. Cx+ e = z

(5.9)

59

where C =

⎡
⎣−A e

B −e

⎤
⎦, x =

⎡
⎣u
r

⎤
⎦, x ∈ R

3 defines the separating plane and and e is a

vector of ones of appropriate dimension. Note that adding a regularization term of ||u||2
to the objective is equivalent to finding the maximum margin hyperplane and can help

generate more aesthetically pleasing graphs. Similarly, constraining

The augmented Lagrangian for (5.9) is :

Lρ(x, y, z) = e′z+ + y′(Cx+ e− z) +
ρ

2
||Cx+ e− z||2 (5.10)

As per the algorithm described in 5.1, (5.9) is minimized by alternating between

updating x, z and the dual multipliers y of the equality constraints. We develop the

updates for each variable below:

x− update

The x− update requires minimizing the augmented Lagrangian (5.10) with respect to x.

xk+1 = argmin
x

Lρ(x, z
k, yk) (5.11)

By the first order optimality conditions of 5.11

∇xLρ(x, z
k, yk) = C ′y + ρC ′(Cx+ e− z)

= 0

The new value of x defines the separating plane. It can then be obtained by solving

Hx = ψ

where H = C ′C

ψ = ρC ′(−e+ z − v)

and y = ρv (5.12)

60

z − update

zk+1 = argmin
z

e′z+ − y′z +
ρ

2
||Cx+ e− z||2

= argmin
z

e′|z|+ e′z
2

− y′z +
ρ

2
(z′z − 2(Cx+ e)z)

= argmin
z

e′|z|
2
− ρ(v + Cx+ e− e

2ρ
)z +

ρ

2
z′z

= argmin
z

e′|z|
2
− ρ

2
||z − θ||2

where θ = v + Cx+ e− e

2ρ
(5.13)

A closed form solution to problems of this form is defined as follows [85]

z = S 1
2ρ
(θ)

where the soft-thresholding operator is a shrinkage operator defined as below:

Sκ(a) =

⎧⎪⎪⎨
⎪⎪⎩

a− κ a > κ

0 |a| ≤ κ

a+ κ a < −κ
(5.14)

Therefore the algorithm for finding the separating planes can be summarized as

follows:

for k = 1 . . . until convergence do

xk+1 = H\ψ {from(5.12)}
zk+1 = S 1

2ρ
(θ) {from (5.13)}

yk+1 = yk + ρ(Cxk+1 + e− zk+1)

end for

5.2.2 ADMM for Proximity Preservation and Overlap Minimization in

Graph Visualizations

In Chapter 4, we described a penalty method to minimize stress subject to con-

straints for no edge-crossings. We can rewrite the no-crossings penalized stress problem

61

(4.7) that used quadratic penalties using L1-penalties as follows:

min
X,u,γ

σ(X, X̄) +
m∑
i=1

λi

2
[||(−Ai(X)ui + (γi +1)e)+||1 + ||(Bi(X)ui − (γi − 1)e)+||1] (5.15)

Here X represents the co-ordinates and X̄ represents the supporting point (the value

of X in the previous iteration). Such penalty functions are known as an exact penalty

functions based on their desirable property that a single minimization can yield the exact

solution if the penalty parameters λi is large enough[78]. This is in contrast to inexact

penalty methods using quadratic penalties where the performance depends on the penalty

parameter update strategy. In order to handle the nonsmoothness resulting from the use

of L1-penalties, (5.15) can be formulated as an ADMM problem. Note, this strategy can

be used to minimize any form of overlap e.g. node-node overlap as described in subsequent

sections. As an illustration, consider the problem of minimizing stress and edge-crossings.

We can rewrite (5.15) as follows:

min.
x,z

1

2
x′Lwx− x′Lx̄x̄+

∑
i<j

wijd
2
ij + λ′z+

s.t. Ux+ r + e = z

where Lw =

⎡
⎣L̄w 0

0 L̄w

⎤
⎦ and Lx̄ =

⎡
⎣L̄X̄ 0

0 L̄X̄

⎤
⎦

and L̄w and L̄X̄ are as defined in (3.2).

Here x ∈ R
2|V | and represents the concatenated x and y co-ordinates of the nodes. z

is the newly introduced variable used to represent the equality constraint and transform the

problem into ADMM form (5.8). U ∈ R
4numcross×2|V | is a sparse matrix and r ∈ R

4numcross

is a vector suitably defined to represent equation 4.4 that defines the separating plane for

each edge-crossing, such that the non-zero terms in U correspond to the terms u, and r

represents γ.

The augmented Lagrangian is then defined as follows

Lρ =
1

2
x′Lwx− x′Lx̄x̄+

∑
i<j

wijd
2
ij + λ′z+ + y′(Ux+ r − z) +

ρ

2
||Ux+ r − z||22 (5.16)

62

The algorithm involves computing the following three steps: the x-update,y-update and

the dual variable update.

x-update

xk+1 = argmin
x

Lρ(x, z
k, yk) (5.17)

= argmin
x

x′Lwx− 2x′Lx̄x̄+ λ′z+ (5.18)

+ y′(Ux+ r + e− z)+ (5.19)

ρ

2
||Ux+ r + e− z||22

By first order optimality conditions of (5.17),

∇xLρ = Lwx− Lx̄x̄+ U ′y + ρU ′(Ux+ r + e− z)

= 0

Therefore, argmin
x

Lρ(x, z
k, yk) can be obtained by simply solving

Hx = ψ

where H = Lwx+ ρU ′U

ψ = Lx̄x̄− U ′y − ρU ′(r + e− z) (5.20)

z − update

zk+1 = argmin
z

Lρ(x
k+1, z, yk)

= argmin
z

λ′

2
(|z|+ z)− y′z +

ρ

2
||Ux+ r + e− z||22

= argmin
z

λ′

2
|z|+ λ′

2
z − y′z − ρ(Ux+ r + e)′z +

ρ

2
||z||22

= argmin
z

λ′

2
|z| − ρ(v + Ux+ r + e− λ

2ρ
)′z +

ρ

2
||z||22 where v =

y

ρ

(5.21)

63

zk+1 = argmin
z

λ′

2
|z|+ ρ

2
||z − θ||22 (5.22)

where θ = v + Ux+ r + e− λ

2ρ

From [15], a closed form solution to problems of this form is defined as follows:

z = S λ
2ρ
(θ)

where the soft-thresholding operator is a shrinkage operator defined as in (5.14).

dual variable update

This step, based on the dual ascent method, involves updating the dual variable y by

taking a step along the gradient of the dual defined by the residual Ux+ r + e− z

yk+1 = yk + ρ(Uxk+1 + r + e− zk+1)

The algorithm can then be summarized as

for k = 1 . . . until convergence do

xk+1 = H\ψ {from (5.20)}
zk+1 = S λ

2ρ
(θ) {from (5.22)}

yk+1 = yk + ρ(Uxk+1 + r + e− zk+1)

end for

5.3 Results and Interpretations

In this section, we demonstrate the efficacy of the method on three sets of graphs.

First, we generate spoligoforests for the CDC dataset. This dataset contains the genotypes

of MTBC strains obtained from samples of the greater than 39K patients diagnosed with

TB in U.S. from 2006 to 2010. This dataset was obtained from the CDC and is collected

as part of TB surveillance measures applied in the U.S. A detailed description of the test

set is provided in Chapter 1.

The distance and adjacency matrix for each spoligoforest was generated by a stan-

dalone spoligoforest generating tool described in Chapter 7. The adjacency matrix for the

spoligoforest was constructed using the algorithm specified in [89]. The distance matrix

used is based on both spoligotypes and MIRU types. Common deletions between spolig-

otypes are used to define a spoligotype similarity matrix, and the minimum Hamming

64

distance between MIRUs associated with each spoligotype is used to define the MIRU-

component of the distance matrix. The spoligotype similarity matrix and MIRU distance

matrix are used in equal proportion to generate a combined distance matrix. This process

is described in further detail in Chapter 7.

The inital layout produced by stress majorization was provided as the starting point

to MAA+. Alternate layouts for each of these spoligoforests were also generated using

three other algorithms: MDS, Laplacian Eigenmaps and Graphviz Twopi. The images

of each of these spoligoforests generated by the four different methods are represented in

Figure 5.2 and 5.1 and in the appendix in Figures A.7, A.9 and A.8. Nodes are colored

by labels assigned by the classification tool provided by TB-Lineage. The stress and

number of crossings for each of these layouts is represented in Table 5.1. Comparing the

images generated using MDS alone with MAA+, we can see that MAA+ layouts have a

significantly reduced number of crossings as compared with the MDS layout, with only

marginal increase in stress. In contrast, other dimensionality reduction techniques have

a large number of edge-crossings. Whereas conventional graph drawing methods for trees

such as Graphviz Twopi that pay no attention to proximity preservation have high stress.

The ROMA graphs are used as a standard benchmark for studies in exact crossing

minimization. While the motivation of this work is not necessarily to find a layout with the

minimum number of crossings, we use this set of non-planar graphs to show the potential

of the method to be adapted for use in laying out more general graphs. These graphs were

collected from a variety of applications [32]. No distance matrix was specified for these

graphs but one was constructed by setting the distance between every pair of nodes to

be equal to the shortest path between them. An initial layout was computed using MDS

and subsequently MAA+ was applied to generate layouts that minimize crossings while

keeping stress low. A comparison of stress and number of crossings for layouts generated

by MDS, MAA+, Laplacian Eigenmaps and Spring Embedding are represented in Table

5.3.

The suite of randomly generated planar graphs described in Chapter 4 was also used

as a test set for MAA+. Computational results comparing the average stress and number

of crossings for layouts computed by MDS, MAA+, Spring and Orthogonal Embedding

are represented in Table 5.2. Each row represents results for a set of of twenty different

graphs of the size specified. Results are averaged over all twenty graphs in the set. MAA+

65

Table 5.1: Metrics for spoligoforests generated with MAA+, MDS,
Twopi and Laplacian Eigenmaps.

Spoligoforest |V| |E| MAA+ MDS Twopi Lap. Eig.
M. africanum 82 58 stress 0.09 0.08 0.45 0.95

cross. 6 17 0 194

X 426 373 stress 0.08 0.05 0.47 0.41
cross. 186 1120 0 3497

T 706 654 stress 0.17 0.09 0.44 0.46
cross. 2340 12242 0 23592

East-african 188 176 stress 0.20 0.11 0.48 1.05
Indian # cross. 126 899 0 2162

M. bovis 79 73 stress 0.08 0.08 0.42 0.64
cross. 9 58 0 438

LAM 652 582 stress 0.13 0.11 0.47 1.04
cross. 1447 6802 137 21800

Haarlem 565 513 stress 0.08 0.05 0.50 0.53
cross. 1093 3826 0 8416

Indo-Oceanic 687 627 stress 0.08 0.05 0.44 0.29
cross. 632 3863 0 6326

EuroAm-African 143 126 stress 0.10 0.09 0.44 0.66
cross. 29 314 0 824

Table 5.2: Comparison of average stress and crossings for MAA+, MDS,
Spring and Orthogonal Embedding for 5 sets of 20 randomly
generated graphs.

|V| |E| metric MAA+ MDS Spring Orth.
50 80 stress 0.16±0.01 0.14±0.00 0.54±0.02 0.56±0.04

cross. 255.50±84.33 416.30±125.11 34.60±14.34 0.00±0.00
100 100 stress 0.15±0.01 0.12±0.01 0.70±0.03 0.68±0.03

cross. 362.40±125.73 683.50±205.47 39.00±16.43 0.00±0.00
120 140 stress 0.15±0.01 0.12±0.00 0.67±0.04 0.69±0.04

cross. 643.10±218.42 1203.15±346.49 64.10±24.83 0.00±0.00
100 120 stress 0.16±0.02 0.12±0.01 0.67±0.03 0.69±0.04

cross. 478.45±205.02 894.70±362.05 53.30±25.67 0.00±0.00
120 160 stress 0.16±0.01 0.12±0.00 0.65±0.04 0.67±0.05

cross. 907.45±295.92 1554.25±469.73 97.30±33.61 0.00±0.00

66

Figure 5.1: Spoligoforest for all sublineages predicted to belong to the
Euro-American X lineage. Layout generated using (a)
MAA+ (b)MDS (c) GraphViz Twopi (d) Laplacian Eigen-
maps. MAA+ improves on MDS in number of crossings with
marginal increase in stress.

67

Figure 5.2: Spoligoforest for all sublineages CAS1-Delhi, CAS1-KILI and
CAS2 of the East-african Indian lineage. Layout generated
using (a) MAA+ (b)MDS (c) GraphViz Twopi (d) Laplacian
Eigenmaps. MAA+ improves on MDS in number of crossings
with marginal increase in stress.

Table 5.3: Comparison of average stress and crossings for MAA+, MDS,
Spring Embedding and Laplacian Eigenmaps for 4 sets of
ROMA graphs, each set ranging in size from 60 to 100 graphs.

graphs —V— —E— MAA+ MDS Spring Lap. Eigmap
59 50 65.42±5.42 stress 0.12±0.07 0.12±0.07 1.22±0.19 1.81±0.27

65.42±5.42 # cross. 17.19±11.68 39.90±26.74 441.46±102.53 350.20±88.48
99 60 79.59±5.89 stress 0.11±0.05 0.11±0.05 1.20±0.13 1.92±0.22

79.59±5.89 # cross. 27.82±17.64 64.22±39.69 647.67±127.36 592.11±127.49
81 70 94.17±6.18 stress 0.11±0.04 0.11±0.04 1.17±0.13 2.34±0.28

94.17±6.18 # cross. 39.04±19.91 89.58±44.42 909.90±158.52 744.84±140.61
99 80 108.85±7.10 stress 0.12±0.05 0.12±0.05 1.12±0.10 2.06±0.21

108.85±7.10 # cross. 56.74±25.17 128.93±53.86 1226.64±220.33 819.26±186.84

68

Figure 5.3: Comparison of spoligoforest layouts by MAA+, MDS, Spring
and Orthogonal Embedding for randomly generated graph
with 120 nodes and 140 edges. MAA+ reduces number of
crossings to 431 from 1113 in MDS layout, while stress in-
creases to 1.4 times that of MDS solution. Stress of Spring
and Orthogonal Embeddings are 5.9 and 5.4 times the MDS
layout.

was applied on graph layout obtained by stress majorization (MDS). MAA+ provided a

drastic reduction in number of crossings with marginal increase in stress as compared to

the starting layout. Spring and Orthogonal Embedding are presented as alternatives that

have low number of crossings but significantly higher stress. These solutions would be

undesirable in a setting where proximity preservation is an important aspect of the graph

visualization. In figure 5.3, we represent layouts using these four layouts for a sample

randomly generated graph with 120 nodes and 140 edges.

5.4 Discussion

ADMM is known to converge to modest accuracy quickly, but can be very slow to

converge to high accuracy. Therefore, setting the right stopping criteria for ADMM poses

a challenge. In practice, using a relatively low tolerance 1e−3 in each iteration of the

algorithm produces better results overall.

69

Another consideration is the choice of norm used. L1-penalties were used in the

MAA+ algorithm, while quadratic penalties were used in Chapter 4. Using L1-penalties

results in an exact minimization problem as described earlier. This will lead to removal of

edge-crossings but may also result in sharper increases in stress. The use of inexact penalty

methods using quadratic penalties for intersections would require gradually increasing the

penalty parameter in each iteration, thus requiring multiple iterations to reach the minima.

The use of gentle penalties means that small changes are made in the co-ordinates of the

nodes resulting in lower stress. Thus, these variations can be used to define objectives

with varying emphasis on the stress and intersections between components resulting in

different layouts.

The ADMM method for finding separating planes provides a significant (up to 10x)

improvement in performance compared to MATLAB LP and QP solvers for each sub-

problem as used in Chapter 4. This is a significant improvement as a large number of

these subproblems |O(|E|2)| need to be solved in every iteration. Further improvements

are obtained by warm-starting the solution from that obtained in previous iterations. In

practice however closed form solutions based on geometry of the problem provide even

greater savings in time. These solutions while not being optimal provide a reduction in

objective value during the u-stage. A detailed description of the closed form solutions is

provided in Chapter 7.

CHAPTER 6

Analysis

In this chapter, we provide a theoretical analysis of the alternating algorithm for

the nonconvex nonsmooth optimization problems. We begin by recalling some definitions

and basic properties of biconvex optimization problems in 6.1. In Section 6.2, we describe

a biconvex nonsmooth optimization problem that serves as a template for our constrained

embedding problems of interest. We develop optimality conditions for this problem. In

section 6.3, we describe an alternating strategy for solving it that exploits the convexity of

its subproblems. The algorithms MAA and MAA+ in Chapters 4 and 5 are based on such

an alternating strategy. We show that the alternating algorithm can produce monotonic

decrease in objective value in every iteration. Convergence properties of the alternating

algorithm are discussed. The analysis provided applies to the use of an alternating al-

gorithm for the general class of nonconvex nonsmooth optimization problems. In section

6.4, we will show how MAA and MAA+ that employ alternating strategies for solving the

constrained MDS problem are special cases of this alternating algorithm.

6.1 Notation and Definitions

Let us recall the following definitions from [55]. Let X ⊆ R
n and U ⊆ R

l be

two non-empty convex sets and let C ⊆ X × U . Let Cx = {u ∈ U : (x, u) ∈ C} and

Cu = {x ∈ X : (x, u) ∈ C}

Definition 1. Biconvex set: The set C is a biconvex set, if Cx is a convex set for every

x ∈ X and Cu is a convex set for every u ∈ U .

Definition 2. Biconvex function: A function f : C → R on a biconvex set C is called

a biconvex function on C, if the function f(x̄, u) is a convex function on Cx̄ for every fixed

x̄ ∈ X, and f(x, ū) is a convex function on Cū for every fixed ū ∈ U .

Definition 3. Biconvex optimization problem: An optimization problem of the form

minimize
x,u

{f(x, u) : (x, u) ∈ C}

70

71

is said to be a biconvex optimization problem, if the objective function is biconvex on C,
where C is a biconvex set on X × U .

See [55] for more detailed definitions and properties of biconvex problems.

We now introduce some notation and recall some definitions from [87] used to de-

scribe the optimality conditions in this chapter.

Definition 4. Subgradient: Let f : Rn → R be a convex function and let x ∈ dom f . A

vector g ∈ R
n is called the subgradient of f at x, if

f(y) ≥ f(x)+ < g, y − x > ∀y ∈ R
n

Definition 5. Subdifferential: The set of all subgradients of f : Rn → R at x is called

the subdifferential of f at x and is denoted by ∂f(x)

The subgradient generalizes the concept of the gradient as applied to convex func-

tions that are not necesarily differentiable. For a continuously differentiable function, the

subdifferential consists of a single unique element, the gradient, denoted by ∇f(x).

The plus function introduced in previous chapters is used to denote the component-wise

maximum of the vector x and 0 as:

x+ = max(x, 0)

We denote the subdifferential Dx(x+) of x+ as the set of subgradients of x+ taken with

respect to x. The set is defined as

Dx(x+) = {δ ∈ R
n},

where for each element δ of the set, the ith component of the vector δ is set based on the

ith component of x, as follows

δi = 1 if xi > 0

∈ [0, 1] if xi = 0

= 0 if xi < 0

Further, optimality conditions for constrained optimization problems are subject

to the satisfaction of certain regularity conditions or constraint qualifications (CQ). One

example of a CQ is Slater’s constraint qualification. If X = {x|g(x) ≤ 0} defines the

72

convex feasible region, then the function g is said to satisfy Slater’s CQ if ∃x̄ such that

g(x̄) < 0. Another example of a CQ is Robinson’s condition which is equivalent to metric

regularity. A sufficient condition for metric regularity at x0 is that the gradients of all

equality constraints are linearly independent and there exists an interior point xM , such

that for all inequality constraints gi(x) = 0, < ∇gi(x0), xM − x0 >< 0 and for all equality

constraints hi(x) = 0, < ∇hi(x0), xM − x0 >= 0 [87].

6.2 Optimality Conditions

Let us now consider a nonconvex nonsmooth optimization problem of the following

form:

minimize
x,u

f(x, u) = φ(x) +

m∑
i=1

(pi(x, u))+

subject to ri(u) ≤ 0, i = 1..m

(6.1)

where φ(x) : Rn → R is a continuous function, differentiable in x and bounded below.

Further, φ(x) is a coercive function i.e. lim
k→+∞

φ(xk) = +∞ whenever ||xk|| → +∞. We

assume, that φ(x) is not necessarily convex. We assume, ri(u) : R
l → R is a continuous

function, differentiable in u, and is strictly convex. pi(x, u) is a biconvex function on

C ⊆ X × U ; it is continuous and differentiable in x and u. Overall, this function is

nonsmooth, with nonsmoothness arising from the plus function applied to the penalty

terms. Constrained embedding problems with biconvex constraints in x ∈ R
n and u ∈ R

l

imposed as penalties can be expressed in the form of problem 6.1. In the following sections,

we will discuss this formulation in the context of constrained MDS. Similarly, φ(x) may

be a second order approximation of any embedding objective.

We define the following convex subproblems obtained by fixing one variable and

minimizing with respect to the other.

x-subproblem: The Problem (6.1) for a fixed value of u = u∗:

minimize
x

f(x, u∗) = φ(x) +

m∑
i=1

(pi(x, u
∗))+ (6.2)

73

u-subproblem: The Problem (6.1) for a fixed value of x = x∗:

minimize
u

f(x∗, u) =
m∑
i=1

(pi(x
∗, u))+

subject to ri(u) ≤ 0, i = 1..m

(6.3)

Definition 6. Partial Optimum: A point (x∗, u∗) is called a partial optimum of a

biconvex function f on C, if

f(x∗, u∗) ≤ f(x, u∗) ∀x ∈ Cu∗ and f(x∗, u∗) ≤ f(x∗, u) ∀u ∈ Cx∗

We now develop optimality conditions for problem (6.1). For this we transform the

optimality conditions defined for a problem with a differentiable objective and possibly

nonsmooth but convex constraints in [87] to apply to problem with a nonconvex nonsmooth

objective:

Theorem 1. First Order Necessary Conditions for optimality of problem (6.1):

Assume, z∗ = (x∗, u∗) is a minimum of problem (6.1) and a constraint qualification is

satisfied, then ∃αi, such that

0 = ∇xφ(x
∗) +

m∑
i=1

δ̂i
∂pi(x

∗, u∗)
∂x

(6.4)

0 =

m∑
i=1

δ̃i
∂pi(x

∗, u∗)
∂u

+ αi∇ri(u
∗) (6.5)

ri(u
∗) ≤ 0

αiri(u
∗) = 0, i = 1..m, α ≥ 0. (6.6)

where δ̂i ∈ Dx(pi(x, u)) and δ̃i ∈ Du(pi(x, u))

Proof. To obtain the above optimality conditions, we transform the problem to an equiv-

alent problem with a differentiable objective. We introduce new variables vi and si to

74

replace the nondifferentiable terms in the objective.

minimize
x,u

f(x, u) = φ(x) +
m∑
i=1

vi

subject to ri(u) ≤ 0, i = 1..m

si = pi(x, u), i = 1..m

(si)+ ≤ vi, i = 1..m

(6.7)

Problem (6.7) is equivalent to (6.1). For every feasible point (x, u) in problem (6.1), the

variables x, u, si = pi(x, u), vi ≥ si are feasible in this problem, and the objective values of

both problems are equal. If x∗, u∗, s∗i = pi(x
∗, u∗), s∗i+ ≤ v∗i is a minimum of the Problem

(6.7), then x∗, u∗ is a solution of (6.1) with objective value of problem (6.1) equal to

objective value of Problem (6.7). We can derive the optimality conditions for (6.1) from

the optimality conditions of Problem (6.7) which are as follows: (x∗, u∗) is a minimum of

the following problem, if Robinson’s Constraint Qualification holds and ∃α ≥ 0, μi ≥ 0

ri(u
∗) ≤ 0

s∗i = pi(x
∗, u∗)

s∗i+ ≤ v∗i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Primal feasibility

αiri(u
∗) = 0, i = 1..m, αi ≥ 0.

μi(si+ − vi) = 0, i = 1..m, μi ≥ 0.

⎫⎬
⎭Complementarity

0 = ∇xφ(x
∗) +

m∑
i=1

λi
∂pi(x

∗, u∗)
∂x

0 = +

m∑
i=1

λi
∂pi(x

∗, u∗)
∂u

+ αi∇ri(u
∗)

0 = 1− μi, i = 1..m,

0 = −λi + μiδi, i = 1..m,

where δ ∈ Ds(s+)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Dual feasibility

By substitution of μi = 1 and δi = λi we obtain the FONC for optimality of (6.1) listed

above.

We now make some observations about the nature of problem (6.1) based on FONC for

optimality.

75

Theorem 2. Partial optimality =⇒ FONC satisfied, if problem(6.1) biconvex:

If z∗ = (x∗, u∗) is a partial optimum of f on C, ∃alpha such that (x∗, u∗) satisfies FONC

in Theorem 1.

Proof. By definitions of x-subproblem in (6.2), x∗ is a minimum of the x-subproblem, if

and only if condition (6.4) is satisfied. Similarly by definitions of u-subproblem, u∗ is a

minimum of the u-subproblem and Slater’s Constraint Qualification is satisfied, if ∃alpha,
such that conditions (6.5) and (6.6) are satisfied. Therefore, since any partial optimum

point z∗ = (x∗, u∗) satisfies optimality conditions for x-subproblem (6.2) and u-subproblem

(6.3), it satisfies optimality conditions (6.4), (6.5) and (6.6), therefore it satisfies all the

FONC for optimality defined in Theorem 1.

Theorem 3. If problem (6.1) biconvex, FONC satisfied =⇒ partial optimality:

If f(x, u) is biconvex, every point that satisfies FONC of problem (6.1) as defined in

Theorem 1 is a partial optimum of f on C.

Proof. By definition of biconvex functions, for fixed u∗, the function f(x, u∗) : Cu∗ → R is

convex. Therefore, ∃d ∈ ∂f(x∗,u∗)
∂x and ∃b ∈ ∂f(x∗,u∗)

∂u

f(x∗, u∗) + d′(x− x∗) ≤ f(x, u∗) ∀x ∈ Cu∗

From condition (6.4), 0 ∈ ∂f(x∗,u∗)
∂x , therefore

f(x∗, u∗) ≤ f(x, u∗) ∀x ∈ Cu∗

Similarly, from convexity of function f(x∗, u) : Cx∗ → R for fixed x∗, we have

f(x∗, u∗) + b′(u− u∗) ≤ f(x∗, u) ∀u ∈ Cx∗

From conditions (6.5) and 6.6, −∑m
i=1 αi∇ri(u

∗) ∈ ∂f(x∗,u∗)
∂u , therefore

f(x∗, u∗) + (−
m∑
i=1

αi∇ri(u
∗))′(u− u∗) ≤ f(x∗, u) ∀u ∈ Cx∗

76

By convexity and differentiability of each constraint ri(u) ≤ 0 i = 1..m,

∇ri(u
∗)′(u− u∗) ≤ ri(u)− ri(u

∗) i = 1..m

−
m∑
i=1

αi∇ri(u
∗)′(u− u∗) ≥

m∑
i=1

αiri(u
∗)−

m∑
i=1

αiri(u)

= −
m∑
i=1

αiri(u) from complementarity

≥ 0 Since αi ≥ 0 and ri(u) ≤ 0 ∀i

Therefore, we have f(x∗, u∗) ≤ f(x∗, u) ∀u ∈ Cx∗ . Therefore, by definition of partial

optimality (x∗, u∗) is a partial optimum.

From theorems 2 and 3, we have the following:

Corollary 1. If f(x, u) biconvex, FONC satisfied ⇔ partial optimality for prob-

lem (6.1): If f(x, u) of problem (6.1) is biconvex, a point z∗ = (x∗, u∗) ∈ R
n+l satisfies

its FONC if and only if it is a partial optimum.

6.3 Alternating Algorithm for Nonconvex Nonsmooth

Optimization Problems

In this section, we develop an algorithm for minimizing a nonconvex nonsmooth

function like Problem (6.1), with the nonconvex objective with additional biconvex penalty

terms. The constrained embedding problem for MDS with biconvex edge-crossing penalties

is an example of this type of mathematical program. Instead of using general global

optimization methods for the problem directly, we define a related biconvex optimization

problem called the auxiliary problem, and we develop an algorithm that exploits convex

substructures of the auxiliary problem. Let us first define the following two programs,

both of the form defined in problem (6.1)

minimize
x,u

f̃(x, u) = φ̃(x) +
m∑
i=1

(pi(x, u))+

subject to ri(u) ≤ 0, i = 1..m

⎫⎪⎪⎬
⎪⎪⎭

Original problem (6.8)

This problem is identical to Problem (6.1) with the additional assumption that φ̃(x) is

a differentiable but nonconvex function of x. Specifically, φ̃ : R
n → R is nonconvex,

77

continuous, differentiable in x, coercive and bounded below. ri(u), i = 1..m is a strictly

convex function, continuous and differentiable in u. pi(x, u) is a biconvex function on

C ⊆ X × U ; it is continuous and differentiable in x and u.

Now, consider the following auxiliary problem:

minimize
x,u

f̂(x, u, s) = φ̂(x, s) +

m∑
i=1

(pi(x, u))+

subject to ri(u) ≤ 0, i = 1..m

⎫⎪⎪⎬
⎪⎪⎭

Auxiliary problem (6.9)

This problem is identical to Problem (6.1) with the additional assumption that f̂(x, u, s)

is biconvex and differentiable in x and u for any fixed s. Moreover, we have φ̂(x, s̄) is

strictly convex for fixed s̄, ∀x ∈ X. φ̂(x, s) is a coercive function, it is continuous and

bounded below. pi(x, u) and ri(u) are defined exactly as in the original problem 6.8.

Further, let us define the assumptions that define the relation between f̂ and f̃ .

Definition 7. Majorization Assumption: We say the auxiliary function f̂(x, u, s)

majorizes the function f̃(x, u) when the following hold:

f̃(x, u) = f̂(x, u, x)

f̃(x, u) < f̂(x, u, s) ∀x, s, s �= x

By this assumption, the function f̂ provides an upper bound on f̃ . From equality

of f̂(x, u, s) and f̃(x, u) at s = x, we also have ∂f̃(x,u)
∂x = ∂f̂(x,u,x)

∂x and ∂f̃(x,u)
∂u = ∂f̂(x,u,x)

∂u ,

i.e. f̂ is tangential to f̃ at the point (x, u, x).

Lemma 1. Equivalance of FONC of original and auxiliary problems If point

(x∗, u∗, x∗) satisfies FONC for optimality of problem (6.9) then (x∗, u∗) also satisfies

FONC for problem (6.8).

Proof. From the majorization assumption, we know that the gradient of the auxiliary

function f̂(xk, uk, xk) taken at xk is equal to the gradient of the original function f̃(xk, uk).

Therefore, from Theorem 1, we can see that the FONC conditions for the two problems:

the original problem (6.8) and the auxiliary function (6.9), majorized at x∗ are equivalent.

The algorithm performs alternating minimization over the variables x and u as

demonstrated in [109] for the generic class of problems with nonseparable objective func-

78

tions. MAA and MAA+ algorithms for solving constrained embedding described in subse-

quent sections are based on such an alternating strategy. The algorithm performs iterative

updates as follows:

ui+1 = argmin
u

f̂(x, ui, xi)

xi+1 = argmin
x

f̂(x, ui+1, xi)

In this section, we discuss convergence results of the alternating strategy. For this we

first define some properties of functions f̃ and f̂ . Let C ⊆ R
n×l, and let zi = (xi, ui)i∈N ∈ C

be the sequence of points obtained by the alternating algorithm. Let both the optimization

subproblems arising at each iteration i be solvable. Then,

Lemma 2. Every step of alternating algorithm is a descent step:

f̂(xi+1, ui+1, xi) < f̂(xi, ui, xi)

where i and i+ 1 are successive iterations in the alternating algorithm.

Proof. Consider iteration i of the algorithm such that xi �= xi+1 and ui �= ui+1. Let

(xi, ui, xi) and (xi+1, ui+1, xi) not be partial optimum points of the auxiliary problem

(6.9). By strict convexity of the objective function of the x-subproblem of problem (6.9),

we have f̂(xi+1, ui, xi) < f̂(xi, ui, xi). And by convexity of the objective function of the

u-subproblem of problem (6.9), we have f̂(xi+1, ui+1, xi) ≤ f̂(xi+1, ui, xi). Therefore,

f̂(xi+1, ui+1, xi) < f̂(xi, ui+1, xi) ≤ f̂(xi, ui, xi)

Theorem 4. Monotonically decreasing function values: Let {f̃(zi)}i∈N be the se-

quence of function values generated by the alternating algorithm, where zi = (xi, ui), then

f̃(zi+1) < f̃(zi) i = 1, 2....

Proof. Consider iteration i of the algorithm. Let xi �= xi+1 and ui �= ui+1, and (xi, ui, xi)

and (xi+1, ui+1, xi) not be partial optimum points of f̂(x, u, xi). From the majorization

assumption we know,

f̂(xi, ui, xi) = f̃(xi, ui). (6.10)

79

Let zi = (xi, ui) and zi+1 = (xi+1, ui+1). Lemma 2 shows f̂(xi+1, ui+1, xi) < f̂(xi, ui, xi),

since f̂ is biconvex, the u-subproblem is convex and the x-subproblem is strictly con-

vex. From Lemma (2) and Equation (6.10) obtained from the majorization assumption,

we have, f̂(xi+1, ui+1, xi) < f̃(xi, ui). Further from majorization assumption, we have

f̃(xi+1, ui+1) ≤ f̂(xi+1, ui+1, xi) since xi �= xi+1. Therefore, combining the two inequali-

ties, f̃(zi+1) < f̃(zi). Thus, the sequence of function values generated by the alternating

algorithm are monotonically decreasing.

Theorem 5. Function values converge: The sequence of function values {f(zi)}i∈N
generated by the alternating algorithm converges monotonically.

Proof. Function f̃ is bounded below by assumption. The sequence of function values

generated by the alternating algorithm are monotonically decreasing as seen in Theorem

4. Therefore, the sequence {f̃(zi)}i∈N converges to a limit value a ∈ R.

Lemma 3. Existence of at least one accumulation point: The sequence {zi}i∈N
generated by the alternating algorithm has at least one accumulation point.

Proof. The sequence {zi}i∈N generated by the alternating algorithm is contained in a

compact set. For a coercive function, such as φ̃, every non-empty lower level set Lc =

{x|φ̃(x) ≤ c} is bounded. The constraint ri(u) ≤ 0 restricts the set of feasible u to

a compact set. Similarly, if we consider the variant of Problem 6.8 with ||u||2 in the

objective rather than constrained, the corresponding functions φ̃(x) and θ̃(u) are coercive

and have bounded level sets. Therefore, by the Bolzano-Weierstrass theorem, the sequence

{zi}i∈N has at least one accumulation point z∗ ∈ C.

Let us now introduce the concept of an algorithmic map as used in [9] to prove

convergence. We restate the definition as applied to the alternating algorithm:

Definition 8. Algorithmic Map Let C ⊆ R
n×l and let f : C → R. Let zi = (xi, ui) ∈ C

for i = 1, 2, ... The map M : C → C defined by zi+1 ∈M(zi) is called the algorithmic map

iff f̂(xk, uk+1, xk) ≤ f̂(xk, u, xk) ∀u ∈ Cxk
and f̂(xk+1, uk+1, xk) ≤ f̂(x, uk+1, xk) ∀x ∈

Cuk+1
.

Each iteration of the alternating algorithm is therefore a transformation from zi

to zi+1, and the algorithm is an iterative selection of points zi+1 ∈ M(zi). Thus, the

alternating algorithm is an iterative application of map M.

80

Further, as X and U are closed sets, and f̂ and f̃ are continuous functions, we show

the algorithmic map M is closed on X × U .

Lemma 4. Closed map

zi = (xi, ui) ∈ X × U, (xi, ui)→ (x∗, u∗) = z∗

z′i = (x′i, u
′
i) ∈M(zi), (x′i, u

′
i)→ (x̄′, ū′) = z̄′

⎫⎬
⎭ =⇒ z̄′ ∈M(z∗).

Proof. z′i ∈ M(zi) ∀i ∈ N =⇒ f̂(xi, u
′
i, xi) ≤ f̂(xi, u, xi) ∀u ∈ U and f̂(x′i, u

′
i, xi) ≤

f̂(x, u′i, xi) ∀x ∈ X. Due to continuity of f̂ , this would be true ∀i. Taking limits,

limi→+∞ f̂(xi, u
′
i, xi) = (x∗, ū′, x∗) and limi→+∞ f̂(xi, u, xi) = (x∗, u, x∗). Therefore,

x∗, ū′, x∗) ≤ (x∗, u, x∗).

Similarly,

f̂(x̄′, ū′, x̄′) = lim
i→+∞

f̂(x′i, u
′
i, x

′
i) ≤ lim

i→+∞
f̂(xi, u

′
i, xi) = (x∗, ū′, x∗)

Hence, by definition of the algorithmic map, z̄′ ∈M(z∗).

Further, we can make the following conclusions regarding convergence of the algo-

rithm and optimality of solution obtained.

Theorem 6. Accumulation point =⇒ FONC Every accumulation point z∗ = (x∗, u∗)

of the sequence {zi}i∈N is a partial optimum of auxiliary function f̂(x, u, x∗) and satisfies

FONC for Optimality for original problem defined in Theorem 1.

Proof. The detailed proof of the first part of the statement follows from theorems pertain-

ing to general biconvex problems as discussed in survey in [55]. Here we reproduce a proof

sketch from [55]. From Lemma 3, the sequence {zi}i∈N is contained in a compact set and

it has at least one accumulation point. Therefore, there exists a convergent subsequence

{zk}k∈K that converges to z∗. Similarly, as the subsequences {zk}k∈K+∞ and {zk}k∈K−∞
are also contained in compact sets, they have accumulation points z+ and z−, respec-

tively. As f̃ is continuous, and the algorithmic map M is closed, we know z+ ∈ M(z∗)

and f(z+) = f(z∗), and also z∗ ∈ M(z−) and f(z−) = f(z∗). Therefore, z∗ must be a

partial optimum. Otherwise by Theorem 4 showing strictly decreasing function values, we

81

would have f(z∗) < f(z−) or f(z∗) < f(z+), and therefore have a contradiction. From

Theorem 2, every partial optimum of the auxiliary problem satisfies FONC.

Theorem 7. Convergence of sequence =⇒ partial optimum of auxiliary prob-

lem: If the sequence {zi}i∈N generated by the alternating algorithm converges to z∗, then

z∗ is a partial optimum of auxiliary function f̂(x, u, x∗).

Proof. This can be seen from Lemma 4, as the algorithmic mapM is closed, zi+1 ∈M(zi)

for all points in the sequence {zi}i∈N. We have z∗ ∈M(z∗). Hence,

f̂(x∗, u∗, x∗) ≤ f̂(x, u∗, x∗), ∀x ∈ X and f̂(x∗, u∗, x∗) ≤ f̂(x∗, u, x∗), ∀u ∈ U

Therefore by definition of partial optimality, z∗ is a partial optimum.

Theorem 8. Sequence convergence and FONC for original problem (6.8) If

(xk, uk) = (xk+1, uk+1), FONC for optimality of original problem in (6.8) are satisfied.

Proof. If sequence {zi}i∈N converges, from Theorem 7, we know (xk, uk, xk) is a partial

optimum point for f̂(x, u, xk). From Theorem 2, partial optimum of a biconvex problem

such as auxiliary problem 6.9 also satisfies its FONC. From Lemma 1, showing equivalence

of FONC for optimality of auxiliary and original problems, we can conclude that FONC

for optimality of (6.8) are satisfied.

Let us define Ω as the set of all solution points that satisfy FONC defined in Theorem

1. Combining the above theorems we can make the following conclusions.

Corollary 2. Either the sequence of points generated by the algorithm converges in a

finite number of steps with (xk, uk) = (xk+1, uk+1), and (xk, uk) ∈ Ω, or it generates an

infinite sequence {zk}, where zk = (xk, uk), such that i) All accumulation points of {zk}
belong to Ω ii) f̃(xk, uk)→ f̃(x̄, ū) for some (x̄, ū) ∈ Ω.

This statement can also be made using Zangwill’s convergence theorem [111] based

on the following properties of f̃ and the algorithmic mapM: (a) f̃ is a continuous function

(b) f̃ is a descent function i.e. there is a strict decrease in function value at every iteration

as seen in Lemma 4, and (c) The algorithmic map M is closed as shown in Theorem 4

82

6.4 Discussion: Alternating Algorithms MAA and MAA+

for Constrained MDS

In this section, we will show that MAA and MAA+ which employ alternating strate-

gies for solving the constrained MDS problem are special cases of the general alternating

algorithm described in the previous section. We first show that the MDS objective aug-

mented with biconvex penalty terms for edge crossings follows the template of the original

problem (6.8). Similarly, the corresponding auxiliary problem matches the template of

program (6.9). We show that the majorization assumption defining the relation between

the MDS objective augmented with penalties and an auxiliary function. Therefore, all

convergence properties described in Section 6.3 apply to MAA and MAA+ for solving

constrained MDS.

Let us first recall the original MDS objective subject to edge-crossing penalties. Let

X ∈ R
n×2 represent a configuration of points, with Xi1 and Xi2 representing the x and

y coordinates of point i. Let δ be the pairwise distance matrix. For convenience, let us

define function p(X,U) representing all penalty terms for edge-crossings determined for

layout given by X.

σ(X,U) =
1

2

n∑
i=1

n∑
j=1

wij(δij − dij(X))2 + p(X,U)

=
1

2

(n∑
i=1

n∑
j=1

wij(δij)
2 − 2

n∑
i=1

n∑
j=1

wijδijdij(X)

+

n∑
i=1

n∑
j=1

wij(dij(X))2
)
+ p(X,U)

In order to write the above equation in matrix notation, note that we can express d2ij(X)

as follows

d2ij(X) = (Xi −Xj)(Xi −Xj)
′

= X ′(ei − ej)(ei − ej)
′X

= tr(X ′EijX)

where ei is the ith column of the identity matrix and Eij = (ei − ej)(ei − ej)
′. Including

the multiplier wij and summing over all i, j, we can define the following matrices

L̄w
i,j =

⎧⎪⎨
⎪⎩
−wij i �= j,

∑
i �=j wij i = j

83

and

L̄i,j(X) =

⎧⎪⎪⎨
⎪⎪⎩

−wijδij
dij(X) i �= j,

−
∑
i �=j

L̄i,j(X) i = j

Therefore, the stress function can be represented as follows:

σ̃(X,U) = η2δ − tr
(
X ′L̄(X)X

)
+

1

2
tr
(
X ′L̄wX

)
+ p(X,U) (6.11)

where

η2δ =

n∑
i=1

n∑
j=i

wij(δij)
2

Similar to the strategy introduced in the seminal work by De Leeuw reproduced in

[30], we can now define an auxiliary function σ̂(X,U, X̂) and show that it provides an

upper bound on σ̃(X,U).

σ̂(X,U, X̂) = η2δ − tr
(
X ′L̄(X̂)X̂

)
+

1

2
tr
(
X ′L̄wX

)
+ p(X,U) (6.12)

We now show that σ̂(X,U, X̂) majorizes σ̃(X,U). This follows from applying

Cauchy-Schwartz inequality to each pair of vectors Xi − Xj and X̂i − X̂j . Recall the

Cauchy-Schwartz inequality for any two vectors s and t is:

s′t ≤ ||s||||t||

Applied to vectors Xi −Xj and X̂i − X̂j we have,

(Xi −Xj)
′(X̂i − X̂j) ≤ ||Xi −Xj ||||X̂i − X̂j ||
tr(X ′EijX̂) ≤ ||Xi −Xj ||||X̂i − X̂j ||
tr(X ′EijX̂)

||X̂i − X̂j ||
≤ ||Xi −Xj || = tr(X ′EijX)

||Xi −Xj ||
1

||X̂i − X̂j ||
tr(X ′EijX̂) ≤ 1

||Xi −Xj || tr(X
′EijX)

Multiplying both sides by wij , and summing over all i, j,

tr(X ′L̄(X̂)X̂) ≤ tr(X ′L̄(X)X)

84

Therefore, for any X̂,

σ̂(X,U, X̂) ≥ σ̃(X,U) (6.13)

with equality when X = X̂

For convenience let us define the following notation: x is X represented as a vector,

Lw =

⎡
⎣L̄w 0̄

0̄ L̄w

⎤
⎦ and L(X) =

⎡
⎣L̄(X) 0̄

0̄ L̄(X)

⎤
⎦ and 0̄ is a matrix of zeros of appropriate

size. The stress function augmented with penalty terms can be rewritten as

minimize
x,u

f̃(x, u) =
1

2
x′Lwx− x′L(x)x+

m∑
i=1

ρi[(−u′Aix+ 1)+ + (u′Bix+ 1)+]

subject to ||Riu||2 ≤ δ, i = 1..m.

(6.14)

The penalty function p(X,U) is expressed using matrices Ai and Bi are matrices in

R
(3m+1)×(2n+1) that serve as indicator matrices. They select appropriate elements of u

defining the separating plane for the ith crossing, and elements of x corresponding to the

nodes of the edges in the ith crossing. For convenience of notation, assume the x and

u vectors in the penalty terms are concatenated with a 1. Ri is a diagonal matrix for

selecting the first two components of the separating plane defined for crossing i. Note

that the objective function f̃(x, u) is coercive in x for any fixed u, as for any arbitrarily

large coordinates x, the stress and penalty terms go to infinity. The constraints restrict

the set of feasible u to a compact set. The function f̃(x, u) is bounded below as the stress

terms and each penalty term is bounded below by 0. Let us assume that the distance

matrix defined by δ has non-zero elements for all i �= j, therefore the function f̃(x, u) is

differentiable in x and in u. We also know that the stress function and penalty terms

are continuous. Therefore, problem (6.14) complies with the template of a nonconvex

nonsmooth optimization problem defined in Problem (6.8).

Let us now compare the original constrained MDS problem with its auxiliary prob-

lem (6.15)

minimize
x,u

f̂(x, u, x̂) =
1

2
x′Lwx− x′L(x̂)x̂+

m∑
i=1

ρi[(u
′Aix+ 1)+ + (u′Bix+ 1)+]

subject to ||Riu||2 ≤ δ, i = 1..m.

(6.15)

This auxiliary problem is similar to (6.14). The penalty terms pi(x, u), i = 1..m aug-

85

mented to the objectives of both problems are identical. All the properties described

above hold, with the additional property that problem (6.15) is biconvex. It can be shown,

if we fix the coordinates of one point as in [49] and consider the problem of finding the

configuration of the remaining n− 1 points, Lwis diagonally dominant and therefore posi-

tive definite. The x-subproblem of (6.15) is strictly convex and has a unique solution, thus

making the configuration translation-independent. Therefore, φ̂(x, x̂) = 1
2x

′Lwx−x′L(x̂)x̂

is biconvex with the x-problem being strictly convex. Therefore, problem (6.15) complies

with the template of a biconvex nonsmooth optimization problem defined in 6.9.

From inequality (6.13), we know the objective function f̂(x, u, x̂) of problem (6.15)

also majorizes function f̃(x, u) of problem (6.14), i.e.

f̂(x, u, x̂) ≥ f̃(x, u) (6.16)

with equality at x̂ = x.

Therefore, we can apply the alternating algorithm developed in Section 6.3 to solve

the original constrained MDS problem (6.14).

For the sake of completion, let us define the First Order Necessary Conditions

(FONC) for optimality of (6.15) using the conditions derived in Theorem 1 for problems

(6.14) and (6.1).

Definition 9. FONC for optimality of original constrained embedding problem

(6.14): Assume, x∗, u∗ is a minimum of problem (6.14) and a constraint qualification is

satisfied, then ∃α, such that

Lwx∗ − Lx∗x∗ +
m∑
i=1

ρi(ĝiA
i′u∗ + ĥiB

i′u∗) = 0

m∑
i=1

[ρi(g̃iA
i′x∗ + h̃iB

i′x∗) + 2αiu
∗] = 0

||Riu∗||2 ≤ δ i = 1..m

αi(||Riu∗||2 − δ) = 0, αi ≥ 0, i = 1..m.

where

ĝ ∈ Dx(u
∗′Aix∗ + 1), ĥ ∈ Dx(u

∗′Bix∗ + 1)

g̃ ∈ Du(u
∗′Aix∗ + 1) and h̃ ∈ Du(u

∗′Bix∗ + 1)

Definition 10. FONC for optimality of auxiliary function(6.15): Assume, x∗, u∗

86

is a minimum of problem (6.15) and a constraint qualification is satisfied, then ∃α, such
that

Lwx∗ − L(x̂)x̂+
m∑
i=1

ρi(ĝiA
i′u∗ + ĥiB

i′u∗) = 0

m∑
i=1

[ρi(g̃iA
i′x∗ + h̃iB

i′x∗) + 2αiu
∗] = 0

||Riu∗||2 ≤ δ i = 1..m

αi(||Riu∗||2 − δ) = 0, αi ≥ 0, i = 1..m.

where

ĝ ∈ Dx(u
∗′Aix∗ + 1), ĥ ∈ Dx(u

∗′Bix∗ + 1)

g̃ ∈ Du(u
∗′Aix∗ + 1) and h̃ ∈ Du(u

∗′Bix∗ + 1)

It can be seen from the above two definitions of optimality conditions that if x∗, u∗

satisfies FONC of problem (6.14), x∗, u∗, x∗ also satisfies FONC of (6.15), the auxiliary

problem majorized at x∗. This follows from Lemma 1.

CHAPTER 7

Variations and Extensions

In this chapter we further describe two tools: spoligoforests (and its variations and

extensions) and host-pathogen maps, that help further the application of visual analytics

for TB epidemiology. They serve as a testbed for the solutions described in Chapter 4

and 5. We will look at variations of the algorithm and concepts discussed in this thesis for

edge-crossing minimization to other problems in information visualization in the context of

TB epidemiology. . In Section 7.1, we describe closed-form solutions for the u-subproblem

based on the geometry of the problem. We then discuss applying the alternating algorithm

for reducing intersections between pairs of edges to apply to node-node and node-edge

intersections in Section 7.2. We apply this method to generate host-pathogen maps with

no node-overlaps. We extend the idea to apply to removing overlaps between objects of

arbitrary shapes and size.

7.1 Closed-form solutions

In this section we develop the closed form solutions for the u-subproblem. The u-

subproblem is essentially the 1-norm SVM problem for the four end-points of the edges.

While we have described methods to find the optimal separating plane in chapter 4 and

5, it may not in fact be necessary to find the optimal separating plane. By exploiting the

geometry of the problem, we can find closed-form solutions significantly faster.

Assume the x and y co-ordinates of a node n are represented by a vector n ∈ R
2.

Consider edge A from node a to b and edge B from node c to d. Denote these as ab and

cd respectively. Equation of line containing edge A is:

x′uab = βab. (7.1)

Portions of this chapter previously appeared as: (1) A. SHABBEER, C. OZCAGLAR, B.
YENER, ET AL., Web tools for molecular epidemiology of tuberculosis, Infect. Genet. Evol., 12
(2012), pp. 767-781.
(2) K. P. BENNETT, C. OZCAGLAR, J. RANGANATHAN, ET AL., Visualization of tuber-
culosis patient and Mycobacterium tuberculosis complex genotype data via host-pathogen maps,
IEEE BIBM Workshop on Computational Advances in Molecular Epidemiology, Atlanta, Novem-
ber 2011., (2011).

87

88

with uab = [b2− a2, a1− b1]
′ and βab = a1(b2− a2) + a2(a1− b1) = a′u. The distance from

c to ab is
|c′uab − βab|
‖uab‖ . (7.2)

Note that c′uab − a′uab > 0 then c is on the “greater than” half space defined by ab

and similarly c′uab − a′uab < 0 then c is the “less than” half space yielding the following

Lemmas.

Lemma 5. The points c and d are contained in the same half space defined by ab if and

only if

(c′uab − a′uab) ∗ (d′uab − a′uab) > 0. (7.3)

Theorem 9. The line segments ab and cd intersect if and only if

(c′uab − a′uab) ∗ (d′uab − a′uab) ≤ 0. (7.4)

and

(a′ucd − c′ucd) ∗ (b′ucd − c′ucd) ≤ 0. (7.5)

Proof. Assume ab and cd intersect at point p. There exists 0 ≤ β ≤ 1, such that p =

c+ β(d− c) and p = d− (1− β)(d− c). Therefore

(c′uab − a′uab) = (p− β(d− c))′uab − a′uab = −β(d− c)′uab

and

(d′uab − a′uab) = (p+ (1− β)(d− c))′uab − a′uab = (1− β)(d− c)′uab

Thus

(c′uab − a′uab)(d′uab − a′uab) = −β(1− β)((d− c)′uab)2 ≤ 0.

Swapping the role of ab and cd yields equation 7.5.

Conversely without loss of generality, assume equation 7.4 does not hold. Then

(c′uab−a′uab)∗ (d′uab−a′uab) > 0. By the Lemma 5, c and d are contained in a half space

defined by ab, thus ab and cd do not intersect.

Note this provides a closed form procedure for determining if the edges are separable.

One can simply calculate both uab and ucd and see if equation of any one edge defines a

half-space containing both endpoints of the other edge.

89

7.1.1 No Intersection Case

In this section we discuss possible closed-form solutions for finding the equation of

the separating line between non-intersecting edges. Including constraints for enforcing a

minimum separation between non-intersecting edges prevents the algorithm from intro-

ducing new edge-crossings while adjusting the layout in the x − stage. It can be seen

that if we simply include penalties for only currently observed edge-crossings in a given

layout, we could potentially introduce new crossings as there would be no penalty for

its occurrence in the current iteration. However introducing penalty terms for all pairs

of edges is computationally expensive, and may in fact be unnecessary as the x − stage

makes gentle updates in the layout. Also the more constraints that are in the place the

less flexibility in the acceptable co-ordinates of a layout. Therefore, a compromise must

be made in allowing enough flexibility in the positions of the nodes that reduce existing

crossings while also preventing introduction of new crossings.

One way of avoiding the introduction of new crossings in the x− stage is to ensure

minimum separation between edges that are relatively close to each other but are as yet

uncrossed. We can formulate this problem enforcing minimum separation between edges

ab and cd as follows:

minu,β (a′u− β + 1)+ + (b′u− β + 1)+(−c′u+ β + 1)+(−d′u+ β + 1)+

s.t. ‖u‖2 ≤ δ
(7.6)

Note that the distance between the separating planes u = β + 1 and u = β − 1

is 2
||u|| . If the optimal objective value is 0, then the edges are separable and presence of

the constraint guarantees the two edges are at least 2
δ apart. However, to solve each of

these problems to optimality may be needlessly expensive. We therefore consider ways of

finding approximate solutions that can be computed relatively easily.

One possible solution would be to use the equations of lines defined by either edge

with an appropriately shifted intercept. For instance, consider the case when the edges

are separable, and exactly one of the edges, say edge ab, defines a half-space in which the

other edge cd lies. Then we can construct candidate separating planes using the equation

of edge ab given by x′uab = βab. The norm of ||uab|| can be set to enforce the desired

minimum separation η as follows,

uab =
uab
||uab|| ∗

2

η

90

Further, we know that if both points c and d lie in exactly one half-space defined

by edge ab, then (c′uab − a′uab) > 0(d′uab − a′uab) > 0. Let m = min(c′uab, d′uab). The

intercept can be set to be exactly midway between the edge ab and the end-point of edge

cd that is closer to edge ab as follows:

βab =
m+ a′uab

2

If uab and βab, found by this procedure result in a non-zero value of the objective in

problem (7.6), then in the x-subproblem, the algorithm tries to find a layout that enforces

the requisite minimum separation between the edges. This can produce an aesthetically

pleasing layout. However, choosing an unduly large η in proportion to the scale of the

drawing makes the problem increasingly difficult as several constraints may be conflicting.

Other variations are possible based on the geometry of the problem that have dif-

fering effects on the behavior of the x-stage of the algorithm. For instance, the intercept

βab can be set to be equal to a′ ∗ uab − 1. Thus (a′u − β + 1)+ + (b′u − β + 1)+ would

be exactly 0. Therefore, if there is a violation of the minimum separation requirement,

the non-zero penalties would be associated only with edge B, and the onus of shifting to

satisfy this constraint in the x-stage of the algorithm would be entirely on edge B.
Note also the following technical aside. The separating plane obtained in the u-

subproblem is used to create the penalties in the x-subproblem and therefore, must use the

same convention of signs. i.e. The sign of uab must be adjusted so that the edge that is

considered as A lies in the “greater than” half space defined by ab and edge B must lie in

the “less than” half space.

If both ab and cd, are acceptable, i.e. each edge define a half-space in which the

other edge lies entirely, then equation of either edge may be used as separating line. In

this case, the line that allows for the largest ||u|| while keeping the objective value at

0, would be preferred. The larger the value of ||u||, the greater flexibility is allowed in

the positioning of coordinates. If the projection of one of the end-points of edge A lies

on edge B, the separating line can be constructed midway between the endpoint and its

projection. If the projection of none of the endpoints of the edges lies on the opposite

edge, one possibility is to use the perpendicular bisector of the line connecting the two

nearest points of edge A and edge B. Some closed form solutions for finding separating

lines discussed in this section are illustrated in Figure 7.1.

91

Figure 7.1: Various possible closed form solutions for finding separating
line between edges when they are separable. Edge A is de-
noted by red nodes, and edge B by blue nodes. The separat-
ing line xu = β is given by the blue line, while corresponding
line x′u = β + 1 is in red, and x′u = β − 1 in green. (i) Both
equations of edge A and B can be used, separating line based
on equation of edge A, (ii) Only a line parallel to B may
be used. (iii) Separating line midway between two nearest
points. Minimum separation requirement not satisfied even
though there is no crossing, will result in non-zero penalty.

7.1.2 Intersection Case

In the separable case too, there are several possibilities for closed form solutions. Let

us consider equations of separating lines derived from the equations of one of the edges.

Consider edge A given by x′uab = βab. If in addition to removing the crossing we want a

minimum separation of exactly η, we can adjust ||u|| as follows:

u =
uab
||uab|| ∗

2

η

The intercept can be set in several ways creating various consequences in the be-

haviour of the x-stage. One possibility is to set it such that A satisfies the constraint

exactly. This can be done by setting β = βab ∗ 2
η∗||uab|| − 1. This would imply a single

node of the opposite edge has a relatively large non-zero penalty. In the x-stage, this node

would be required to move the most, while other nodes may remain stationary in order to

92

satisfy the no-crossing constraint corresponding to this edge-pair. Another possibility is to

set the intercept midway between βab and c ∗ uab or (d ∗ uab). This may result in all three

nodes a, b, c violating the constraint, but the violation caused by each node is relatively

small. Therefore, three nodes would be required to adjust their coordinates, but the shift

in each node required is relatively small. Overall, the former choice resulted in slightly

better performance and is what is included in the implementation. The two possibilities

are illustrated in Figure 7.2.

Further, we can use heuristics to decide which point c or d of edge B is on the

“wrong” side of edge A. For instance, the point whose distance from edge A is smaller

can be chosen as the point on the “wrong” side. Consider the case when c is closer to

edge A, than d is. If (−c′u+ β+1) < 0, i.e. c is on the correct side, then setting u = −u,
would obtain the desired effect. This choice results in the smallest possible adjustment

in coordinates to satisfy the crossing constraint. Alternatively, this choice can be made

based on the degree of nodes c and d. A leaf node has greater flexibility in placement as

compared to a non-leaf node, as a change in the position of a non-leaf node could also

alter the coordinates of all nodes connected to it. Therefore, setting a leaf node to be

on the “wrong” side, even if it causes a larger penalty, and forcing it to move might be

beneficial as it does not cause other edges connected to non-leaf nodes to move.

7.2 Intersections between Arbitrary Shapes in Graph Draw-

ings

We also explore various genetic distances that serve as proximity measures for spolig-

otypes.

A strategy similar to that for minimizing edge-crossings as proposed earlier can be

used to minimize overlaps between various components in a graph drawing e.g. node-

node overlap, node-edge overlap, label overlaps and intersections between subgraphs. We

describe the optimization challenges posed by these visualization tasks involving mini-

mizing overlap while preserving proximity relations. Given that each object in the graph

is a convex polyhedron (considering convex hulls of arbitrary shapes), we can define the

condition for no overlap between these objects. Allowing A and B to be of an arbitrary

number of extreme points, recall corollary (4.4) that can be easily proven to apply to

intersections between any convex polyhedrons expressed as a convex combination of their

extreme points. Two polyhedrons intersect only if the condition specified in (4.5) is sat-

93

Figure 7.2: Various possible closed form solutions for finding separating
line between edges when they are separable. Edge A is de-
noted by red nodes, and edge B by blue nodes. The separating
line xu = β is given by the blue line, while corresponding line
x′u = β+1 is in red, and x′u = β− 1 in green. (i) Intercept set
such that B satisfies constraint exactly, non-zero penalty for
only single node of edge A (ii) Intercept set such that 3 nodes
have non-zero penalties, although penalty of each node is rel-
atively small. Requires adjustment of three points to satisfy
constraint.

isfied. If the edges do cross, then the optimal objective of (4.5) will be strictly greater

than 0. The solution then defines the half-spaces in which the two graph objects should

lie, such that the error is minimized. This is analogous to soft-margin SVM classifiers for

non-separable data where the goal is to find the separating plane that best separates the

data while allowing for the possibility of misclassified points. A cost is incurred for every

misclassified point, therefore the solution tries to strike a balance between finding the

maximum margin separating plane and minimizing training error. From the visualization

perspective, the soft-margin has a desirable aesthetic consequence. The least adjustment

is required in the location of the objects so that there is no overlap. This implies that

no overlaps between objects can be obtained with only small changes in stress. Fig. 7.3

represents this concept of finding the separating plane for a pair of nodes.

There can be several variations that have interesting aesthetic consequences. Ob-

serve that the node object A in Fig. 7.3 is a nonconvex set of points, and the convex

envelope of the node is used in the illustration to represent the concept of linear separa-

bility of the convex polyhedrons A and B . Another possibility is to split the nonconvex

94

(a) (b) (c)

Figure 7.3: Condition for no-overlap: (a) Objects A and B do not overlap.
Any line between xu−γ = 1 and xu−γ = −1 strictly separates
the edges. Using a soft margin, the plane in (b) xu − γ = 0
separates the plane into half spaces that should contain each
object. (c) Nodes that are nonconvex sets can be decomposed
into convex parts if prior knowledge about the shape of the
node is known.

object into its convex parts, if we have knowledge of the special structure of the shape

of the node. This is represented in Fig. 7.3 c. Decomposing a node into simple-shaped

convex sets could imply lesser adjustment in the placement of objects to satisfy the no-

overlapping requirement. However, it comes at the additional cost of computing more

separating planes for more pairs of objects and having more penalty terms.

In the following three sections, we show various applications that illustrate the

concept of removing overlaps between arbitrary components of a graph.

7.2.1 Minimizing Overlaps in Host-pathogen Maps

These concepts of minimizing node-node, node-label overlap can be tested in a

practical application: generating spoligoforests and host-pathogen maps for tuberculosis.

Spoligoforests are described in greater detail in Chapter 1 and host-pathogen maps de-

scribed in detail in [11] are introduced in this section. Host-pathogen map visualizations

provide a graphical representation of strain and patient associations. Patients are repre-

sented as nodes within the nested boxes depicting strains. The visualization as shown in

Fig. 7.4 depicts each strain by telescopic boxes depending on the number of biomarkers

uploaded. In Fig. 7.4, the nested boxes represent the spoligotype, MIRU type and RFLP

pattern, respectively. Other biomarkers such as SNPs may also be used. Patient char-

95

Figure 7.4: Host-pathogen maps of patients from New York State in-
fected with strains of the Indo-Oceanic lineage that visualize
associations between the genotype and host characteristics.
Strains are represented by triples of spoligotype, MIRU and
RFLP patterns and are depicted by nested boxes. Patients
are depicted as nodes colored by region of birth. The vi-
sualization shows the predominance of strains of the Indo-
Oceanic lineage in patients from South-East Asia and the In-
dian subcontinent. Clusters of cases with identical associated
genotype appear in bigger boxes, thus bringing attention to
possible outbreaks.

acteristics such as birth-place are represented by color coding the nodes by continent of

birth. This visualization provides a means of tracking trends in transmissions between

patients infected with the strains of interest. It can help reveal previously unrecognized

epidemiological links between patients. Anomalous behavior of strain groups can also

be identified. Epidemiological investigations require the investment of significant time

and resources. Therefore, identifying suspicious clusters using such visual tools will help

towards the efficient allocation of efforts for case investigations.

Previously, tree-maps were used to visualize host-pathogen information [11]. Tree-

maps are a popular and effective approach for visualizing hierarchically structured infor-

mation. However, the design allows for very little flexibility in the placement of boxes. An

important goal of any effective information visualization is to create visual appeal while

minimizing cognitive load. Tree maps can capture both structural information as well as

96

Figure 7.5: Illustration of the concept of eliminating overlaps between
nested boxes, and boxes and labels in host-pathogen maps.

details of content of individual nodes (provided the graph is not too dense). The amount of

information to be displayed, and hence space requirements, for traditional representations

of hierarchical information e.g. listings and outlines increases linearly with the number of

nodes [91]. While traditional tree diagrams represent structure quite effectively, greater

than 50% of space goes into the background. The construction of tree maps implicitly

captures structure, and provides ample space to represent content information. They are

therefore very good tools to depict the overall view of trends in host-pathogen associations.

However, the main drawback with generating such a layout is there is not enough

flexibility in the placement of nodes. It is desirable to have a visualization where the

hierarchical structure is maintained, but boxes be placed such that proximity relations are

preserved. For instance, distances between boxes could reflect genetic distances between

strains. Distances between nodes within boxes can be used to reflect ”epidemiological

distances” based on shared risk factors or epi-links. Temporal information e.g. time of

infection in order of occurrence could also be represented as distances between nodes

placed along a single axis, with the earliest infection shown as the leftmost point on the

axis. Additional bounds constraints would have to be incorporated to ensure the nodes

are placed within the boxes. With these additional desiderata, the requirement of having

absolutely no background space would have to be relaxed. Moreover, since boxes have

arbitrary positions, overlaps between boxes and between boxes and labels will have to be

handled. This is illustrated in Fig. 7.5. Such depictions that capture the distances between

nodes and boxes can be especially useful when providing a detailed view of smaller sets of

patients of interest. The distances can be used to capture multiple pieces of information

97

e.g. genetic distances, epi-distances and time. These visualizations can complement the

big-picture overview provided by treemap based host-pathogen maps.

In Figure 7.6, we represent a host-pathogen map based on some of these ideas. Each

colored circle represents an infected individual, with the color representing the ethnicity

of the person. Each box represents a MIRU type. Patients with identical spoligotype

and MIRU type are placed in the same box, just as in Host-Pathogen Treemaps described

in Chapter 2. The size of the box is therefore determined by the number of patients,

therefore the boxes are not uniformly sized. Distances between boxes represent the MIRU

Hamming distances. MIRU types that differ in exactly one locus, known as one-offs are

connected by an edge. One-offs are of special interest to epidemiologists. They could

represent cases in which the MIRU type has evolved. While these occurrences are not

frequent, the number of repeats at a locus have been observed to change over a period

of 2 − 3 years, resulting in different genotyping results for the same patient over a span

of some years. Or they could simply be instances when the number of repeats at a given

locus were misread. Therefore the cluster may be larger than perceived and there may

be a greater number of active transmissions than believed. Therefore, there is a need for

these cases to be highlighted in a visualization.

The host pathogen map in Figure 7.7 shows all patients in New York City infected

with strains that have spoligotype 1111111111110110000000000000000000000000000 of

the Euro-American lineage. The large box at the top left (associated with MIRU type

223327133228) and filled with yellow circles is one example of a case that is interesting

to epidemiologists. Firstly, because the patients with these strains are predominantly US-

born. It is largely believed by health care workers that a majority of US-born individuals

represent cases of active transmission within the U.S.. While foreign-born patients possi-

bly acquired infections outside the country but have only become actively infected within

the U.S [20]. Therefore, the former cases are of greater interest in terms of stopping an

active chain of transmission. Furthermore, the one-offs (223327163228 and 223327173228)

associated with this MIRU type are also of interest as they may represent cases of muta-

tion in MIRU type or technical error and in fact could be cases of active transmission of

MIRU type 223327133228.

Figure 7.7 represents a host-pathogen map of the virulent Beijing strain with spolig-

otype 0000000000000000000000000000000000111111111 from the New York City dataset

of patients. While this strain is largely associated with people of East Asian descent as

98

Figure 7.6: Host-pathogen map for Euro-American strains (a) before and
(b) after node overlap removal.

can be seen by the predominantly red circles in the image, there are cases of US-born

patients as well, possibly representing cases of active transmission.

Thus host-path maps show the potential of removing overlaps between arbitrarily

sized nodes using the alternating strategy. There are existing methods such as in [34, 50],

that also perform node overlap removal by scanning the graph from left to right and

top to bottom and imposing constraints based on the minimum and maximum x and y

coordinates of each node. A formal comparison between these methods is left as future

work. However these methods may not be suited for more arbitrarily shaped objects in a

graph drawing. In the following two subsections, we illustrate two such applications where

overlaps between arbitrarily shaped objects in a graph drawing are eliminated.

7.2.2 Node-Edge Overlaps

Constraints to avoid node-edge overlaps may be required in cases, when we have

nodes of arbitrary shape and size. When nodes are not simply represented as points and

have a significant width and height relative to edges, this can lead to overlaps between

edges and nodes. If constraints that eliminate node-edge intersection are imposed as

99

Figure 7.7: Host-pathogen map for East-Asian strains (a) before and (b)
after node overlap removal.

penalties in addition to intersections between edges, we can get an aesthetically more

appealing layout with marginal increase in stress. A possible application of minimizing

node-edge intersections arises in generating spoligoforests where nodes are of arbitrary

shapes and sizes. For example, when generating interactive spoligoforests, where users may

zoom into nodes to view an embedded host-pathogen map showing all patients infected

with the corresponding strains. This idea is represented in the sample spoligoforest in Fig.

7.8.

Note also that as a side-effect of imposing edge-crossing constraints alone the algo-

rithm can reduce the length of “offending” edges that cause one or more crossings. We

show how a minimum separation can be enforced between nodes and edges allowing the

use of larger nodes. To generate the image in Figure 7.9 (b) two types of constraints were

imposed as penalties, the edge-crossing constraints as described in Chapter 4, as well as

similar constraints preventing overlap between pairs of a node A and an edge B.

Au ≥ γ + 1

Bu ≤ e′γ − 1

100

Figure 7.8: Illustration of the concept of eliminating node-node and
node-edge intersections resulting from nodes of arbitrary
shapes and sizes in a spoligoforest. l1 is the separating plane
that defines the halfspaces in which the node and edge must
lie, while l2 defines the halfspaces that should contain the
two nodes.

where A =
(
Ax Ay

)
with Ax and Ay represents x and y co-ordinates of the node, and

B =

⎛
⎝Sx Sy

Tx Ty

⎞
⎠, where B is an edge between nodes S and T .

7.2.3 Convex Envelope around Subgraphs

Another possible application of this methodology is in modifying the placement of

individual subgraphs in existing layouts to respect some proximity-preserving criteria, by

applying penalties for overlapping subgraphs. In Figure 7.10, we modify existing layout

as computed by Graphviz Twopi to respect lineage-wise distances. We define inter-lineage

distance as the average genetic distance between strains belonging to each lineage. While

we do not modify the layout of each individual component, we change the overall layout

by altering the relative positions of the components to reflect the inter-lineage distance.

Thus in Figure 7.10, a spoligoforest of EuroAm-African and M. africanum lineages, the

two components corresponding to the T-Uganda sublineage are placed adjacent to each

other, and all the EuroAm-African sublineages are placed closer together than to the M.

africanum sublineages. This system can be adapted for use in ”packing” algorithms as in

[51] that strives to find the most compact arrangement of a set of disconnected components.

Another possible application of this concept is in parallelizing the algorithm to suitably

partition the graph, find crossings minimized layouts for each of the disconnected compo-

nents individually and merge them by disallowing overlaps between any components. We

101

Figure 7.9: Enforcing minimum separation between nodes and edges re-
sults in a clear representation of both nodes and edges, al-
lowing larger nodes to be used, with marginal increase in
stress. (a) Initial layout, stress=0.103 and (b) Final layout,
stress=0.112.

leave this promising direction as future work.

7.3 Tool for Spoligoforest Generation

In this section, we describe a standalone tool for spoligoforest generation. This

software is a Java implementation of the MAA+ algorithm, various genetic distance com-

putation and spoligoforest generating algorithm described in [89]. Options to use other

graph layouts generated by MDS using stress majorization and SNE [62] are also provided

to the user. The interface is easy to use and allows users to upload a comma separated

text file of genotypes(Spoligotypes and optionally MIRU types) along with putative labels

to generate spoligoforest images. The adjacency matrix for the user-uploaded dataset is

generated using the algorithm described in [89]. Several options are provided to generate

102

Figure 7.10: Spoligoforest layouts computed using Graphviz Twopi mod-
ified so distance between components reflects inter-lineage
distance. (a) Original layout by Twopi (b) Convex hull of
each component computed, MDS using inter-lineage dis-
tances results in overlapping components. (c) Overlaps be-
tween convex shapes removed while keeping stress low.

the distance matrix. Users may choose between one or more combinations of similarity

measures for spoligotypes and MIRU types. Spoligotype distances may be combined with

Hamming, l1-norm or l2-norm distances between MIRU types. While the user may choose

to weight each distance measure differently, the recommended choice is equally weighted

Common (Spoligotype) Deletions and MIRU Hamming distances. The MAA+ algorithm

is implemented to create an embedding that preserves the pairwise distances as per the

generated distances matrix while keeping the number of crossings low. Separating planes

between each pair of edges are found using closed-form solutions described in Section 7.1.

An ADMM-based minimization routine is used for the X-stage as described in 5.2.2. Users

103

may generate multiple spoligoforest images for the same input data file using the various

combinations of distance measures and embedding algorithms (MAA+, MDS, SNE). Each

spoligoforest is generated in a separate tab. The user may export one or all of the images

in Portable Network Graphics (PNG) format, individually or combined in a zip file, for

later use. Some spoligoforest images generated for equally weighted Common (Spoligo-

type) Deletions and MIRU Hamming distance matrices using MDS and MAA+ algorithms

are represented in figure 7.11. Further this tool is integrated with host-pathogen maps

described in Chapter 2. Clicking on a node in the spoligoforest provides the user with a

context menu to generate a host-pathogen map for all MIRU types associated with the

spoligotype corresponding to the node. This interacton is represented in figure 7.8. The

software will be shortly made available on the TB-Insight website as part of the host of

tools to aid studies in molecular epidemiology of TB. This software provides the TB epi-

demiology community with a useful tool to visualize and analyze the genetic diversity in

an MTBC population of interest.

Also note that since spoligoforests are used to visualize genetic diversity of an MTBC

population, it is necessary for the proximity measures to represent evolutionary distances

between strains. In this section, we describe proximity measures offered by the tool, that

are based on known mutation mechanisms of the DR region. Distance matrices derived

from these similarity measures are used to draw proximity preserving visualizations of

the spoligotype strain dataset. These similarity measures were used in [14] for clustering

MTBC strains into lineages. These measures take into account the domain knowledge

about evolution of the DR region – one or more adjacent spacers may be lost in a single

mutation event [108]. Therefore, contiguous deletions or the absence thereof is a good

measure of the evolutionary distance between spoligotypes, rather than looking at differ-

ences in individual spacers as with traditional Hamming distances. In the tool we provide

implementations of the distance metrics defined in [14].

104

Figure 7.11: Spoligoforest generated by MAA+ using the TB-Vis spoligo-
forest tool for M. africanum, M. bovis and EuroAm-African
lineages.

CHAPTER 8

Conclusions

In this chapter, we summarize the main contributions of this work :

� Formulation of molecular epidemiology data visualization challenges as optimization

problems that represent proximity relations between objects in a graph layout while

minimizing overlap.

� An alternating algorithm to solve these nonconvex nonsmooth optimization prob-

lems. Implementations of the alternating algorithm MAA and MAA+.

� We provide an analysis of this algorithm, describe optimality conditions of the prob-

lem and convergence properties of the algorithm. We show the alternating algorithm

guarantees an improvement in the objective relative to the starting configuration of

a graph.

� Tools for TB molecular epidemiology:

– Effective information visualizations: spoligoforests and host-pathogen maps

using MAA and MAA+.

– Development of TB-Lineage: a rule-based lineage classification tool.

We discuss these with reference to the growing role of DNA fingerprint data in

building analytics tools for effective tracking and control of TB. This work has created

many opportunities and future directions for representing and solving visual analytics

tasks as optimization problems. We discuss these briefly.

The application of molecular methods for the epidemiology of TB complement tra-

ditional approaches used in public health, and have helped to better understand TB dy-

namics and the characteristics of its causative agent, Mycobacterium tuberculosis complex

Portions of this chapter previously appeared as: (1) A. SHABBEER, C. OZCAGLAR, AND
K. P. BENNETT, Crossing minimization within graph embeddings, arXiv preprint arXiv:1210.,
(2012).
(2) A. SHABBEER, C. OZCAGLAR, B. YENER, ET AL., Preserving proximity relations and
minimizing edge-crossings in high dimensional graph visualizations, IEEE Symposium on Large
Data Analysis and Visualization (LDAV), Providence, RI, 2011, pp. 131-132.
(3) A. SHABBEER AND K. P BENNETT, Proximity preservation and crossing-minimization for
graph embedding, in The Snowbird Learning Workshop, 2012.

105

106

(MTBC). DNA fingerprinting methods are now routinely employed in TB surveillance

programs and have been used primarily to detect recent transmissions and to investigate

outbreaks. DNA fingerprinting methods such as spoligotyping, Mycobacterial Interspersed

Repetitive Units - Variable Number Tandem Repeats (MIRU-VNTR) typing and IS6110

Restriction Fragment Length Polymorphism typing have provided insights into the genetic

diversity of the population structure of the MTBC [74]. Primarily, these typing meth-

ods aid traditional epidemiological approaches to detect unsuspected transmission links.

These tools address the shortcomings of standard contact tracing methods in identifying

transmission events. Since epidemiologically linked patients have identical fingerprints,

the fingerprint can serve as a basic tool to distinguish between reactivation of latent in-

fections and recent transmissions and in identifying chains of transmissions[23]. In the

long term, however, DNA fingerprint data have been useful in population-based studies

and helped develop a deeper understanding of the disease dynamics. In addition, there is

great potential in further insights that can be created using routinely collected genotype

information.

In addition to tracking individual strains, classification of strains into genetic groups

can help provide insights into the characteristics of the strain such as host association,

drug resistance, immunity to vaccines, virulence, mutation and transmission rates, latency

periods, and pathogen fitness [26, 48, 29, 80, 63]. Groups of emerging strains can also be

revealed by an analysis of trends by lineage. Recent studies have established a correlation

between host ethnicity and pathogen strains [46, 22, 63, 47]. In this thesis, we first

presented a survey of existing classification and visualization tools used for TB molecular

epidemiology. We describe our own publicly available classification tool TB-Lineage http:

//tbinsight.cs.rpi.edu/run tb lineage.html that classifies strains of the MTBC into major

lineages based on DNA fingerprint data. This tool was developed by synthesizing existing

literature and knowledge from experts in the CDC.

Our attempts to build classification tools and analyze the performance of new and

existing classification tools exposed new challenges and motivated the need for visual

analytics tools for TB. Visualization of public health data is emerging as a popular aid

to traditional methods of epidemiology. Modeling and visualizing genetic relatedness and

patterns of mutation over relatively short periods of time as provided by spoligoforests are

crucial for epidemiological studies. Tools that help in identifying previously unrecognized

epi-links and associations between patient and strain groups, such as host-pathogen maps,

107

help analyze recent transmission trends and focus public health efforts in an effective

manner.

Generating these visualizations poses a challenging optimization problem. Creating

the visualization requires preserving proximity relations while also minimizing intersec-

tions between nodes and edges. While existing methods can successfully accomplish each

of these embedding objectives individually, combining these (sometimes contradictory)

goals poses interesting challenges. Crossing minimization techniques leave little flexibil-

ity in the placement of nodes. It is therefore difficult to combine these existing methods

with proximity preserving embedding techniques. In this work, we developed an alternate

formulation to represent crossings. We showed that the condition for non-intersection

of graph ”objects” (subgraphs, nodes, edges, labels) can be expressed as the feasibility

of a system of nonlinear inequalities. These constraints can then easily be included as

penalties in the original proximity preserving embedding objective. Thus, we propose a

novel continuous optimization based approach to generating graph embeddings that both

preserves proximity relations and minimizes intersection of nodes and edges.

We propose an alternating approach to handle the nonconvexity of this resulting

objective. For a fixed layout we compute the separating planes that define the conditions

that must be satisfied so that there are no intersections between nodes and edges. We

then optimize the layout with respect to proximity preserving criteria and the conditions

identified in the previous stage. Both problems (i) finding the separating planes and (ii)

minimizing the penalized proximity preserving objective are nonsmooth. We propose an

elegant optimization framework: Alternating Directions of Multiplier Methods (ADMM)

to handle the nonsmoothness. ADMM is an iterative method that involves solving simple

problems which have known closed-form solutions at every iteration improving computa-

tional costs.

We describe the optimality conditions for the problem and describe the convergence

properties of the algorithm. We also show that the sequence of function values generated

by the algorithm is monotonically decreasing and converges. Thus we propose using

nonconvex nonsmooth optimization techniques for the development of two visual analytics

tools for the molecular epidemiology of TB: spoligoforests and host pathogen maps.

This work opens up many avenues for future research at the intersection of ma-

chine learning and data visualization. Here we focused on elimination of edge crossings

and stress minimization (MDS). The theorems and algorithms are directly applicable to

108

the intersection of any graph components that are convex polyhedrons. As illustrated in

host-pathogen maps, the method can also be used to eliminate node-node overlaps and

node-edge crossings. Constraints can be developed to apply to various components of

a graph drawing such as between subgraphs, labels, or annotations. The general multi-

objective approach for minimizing overlaps between graph components is applicable to

any optimization-based dimensionality reduction, graph drawing or embedding methods

[103, 33] used for data visualization. While the method described was motivated by the

need to minimize edge crossings and simultaneously preserve pairwise distances in hetero-

geneous graph data as defined by the MDS objective, it can be used to eliminate edge

crossings with any embedding objective. Our work was limited to spoligoforests to solve

a relevant problem in TB molecular epidemiology. The penalty approach however can be

used to reduce crossings in nonplanar graphs as well. Another direction to be pursued is

parallelizing the algorithm by a suitable partitioning of the graph, removal of overlaps in

resulting components, and subsequently merging the modified layouts of components. We

leave these promising research directions as future work.

REFERENCES

[1] C. Allix-Beguec, D. Harmsen, T. Weniger, et al., Evaluation and strategy
for use of MIRU-VNTRplus, a multifunctional database for online analysis of
genotyping data and phylogenetic identification of Mycobacterium tuberculosis
complex isolates, J. Clin. Microbiol., 46 (2008), pp. 2692–2699.

[2] M. Aminian, A. Shabbeer, and K.P. Bennett, Determination of major
lineages of Mycobacterium tuberculosis complex using Mycobacterial Interspersed
Repetitive Units, in 2009 IEEE International Conference on Bioinformatics and
Biomedicine, Washington D.C., 2009, IEEE, pp. 338–343.

[3] M. Aminian, A. Shabbeer, and K. Bennett, A conformal bayesian network
for classification of Mycobacterium tuberculosis complex lineages, BMC
Bioinforma., 11 (2010), p. S4.

[4] M. Aminian, A. Shabbeer, K. Hadley, et al., Knowledge-based bayesian
network for the classification of Mycobacterium tuberculosis complex sublineages, in
2011 ACM Conference on Bioinformatics, Computational Biology and
Biomedicine, Orlando, FL, 2011, ACM-BCB.

[5] L. Baker, T. Brown, M. C. Maiden, et al., Silent nucleotide polymorphisms
and a phylogeny for Mycobacterium tuberculosis, Emerg. Infect. Dis., 10 (2004),
pp. 1568–77.

[6] P.F. Barnes and M.D. Cave, Molecular epidemiology of tuberculosis, New Engl.
J. Med., 349 (2003), pp. 1149–1156.

[7] C. Batini, M. Talamo, and R. Tamassia, Computer aided layout of entity
relationship diagrams, J. Syst. Softw., 4 (1984), pp. 163–173.

[8] G.D. Battista, P. Eades, R. Tamassia, et al., Graph Drawing: Algorithms
for the Visualization of Graphs, Prentice Hall PTR, Englewood Cliffs, NJ, 1998.

[9] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory and Algorithms, Wiley-Interscience, New York, 2006.

[10] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction
and data representation, Neural Comput., 15 (2003), pp. 1373–1396.

[11] K. P. Bennett, C. Ozcaglar, J. Ranganathan, et al., Visualization of
tuberculosis patient and Mycobacterium tuberculosis complex genotype data via
host-pathogen maps, in 2011 IEEE International Conference on Bioinformatics and
Biomedicine Workshops (BIBMW), Atlanta, GA, 2011.

[12] Dimitri P. Bertsekas, Constrained Optimization and Lagrange Multiplier
Methods (Optimization and Neural Computation Series), Athena Scientific,
Nashua, NH, 1 ed., 1996.

109

110

[13] I. Borg and P.J.F. Groenen, Modern Multidimensional Scaling: Theory and
Applications, Springer Verlag, Berlin, Germany, 2005.

[14] C. Borile, M. Labarre, S. Franz, et al., Using affinity propagation for
identifying subspecies among clonal organisms: Lessons from M. tuberculosis, BMC
Bioinforma., 12 (2011), p. 224.

[15] S. Boyd, N. Parikh, E. Chu, et al., Distributed optimization and statistical
learning via the alternating direction method of multipliers, Foundations Trends
Mach. Learn., 3 (2011), pp. 1–122.

[16] J.M. Boyer and W.J. Myrvold, On the cutting edge: Simplified O(n) planarity
by edge addition, J. Graph Algorithms Appl., 8 (2004), pp. 241–273.

[17] U. Brandes and T. Willhalm, Visualization of bibliographic networks with a
reshaped landscape metaphor, in Proceedings of the Symposium on Data
Visualisation, Aire-la-Ville, Switzerland, 2002, Eurographics Association, p. 159.

[18] R. Brosch, S. V. Gordon, M. Marmiesse, et al., A new evolutionary
scenario for the Mycobacterium tuberculosis complex, Proc. Natl. Acad. Sci., 99
(2002), pp. 3684–3689.

[19] K. Brudey, J. R. Driscoll, L. Rigouts, et al., Mycobacterium tuberculosis
complex genetic diversity: Mining the fourth international spoligotyping database
(SpolDB4) for classification, population genetics and epidemiology, BMC
Microbiol., 6 (2006), p. 23.

[20] Kevin P Cain, Stephen R Benoit, Carla A Winston, et al., Tuberculosis
among foreign-born persons in the United States, The J. Am. Méd. Assoc., 300
(2008), pp. 405–412.

[21] L.L. Cavalli-Sforza and A.W.F. Edwards, Phylogenetic analysis. Models and
estimation procedures, Am. J. Hum. Genet., 19 (1967), p. 233.

[22] Maxine Caws, Guy Thwaites, Sarah Dunstan, et al., The influence of host
and bacterial genotype on the development of disseminated disease with
Mycobacterium tuberculosis, PLoS Pathog., 4 (2008), p. e1000034.

[23] CDC, Guide to the Application of Genotyping to Tuberculosis Prevention and
Control, 2011. Date last accessed Aug. 23, 2013
http://www.cdc.gov/tb/programs/genotyping/manual.htm.

[24] A. Civril, M. Magdon-Ismail, and E. Bocek-Rivele, SDE: Graph drawing
using spectral distance embedding, in Graph Drawing, Karlsruhe, Germany, 2006,
Springer, pp. 512–513.

[25] P. Constant, E. Perez, W. Malaga, et al., Role of the pks15/1 gene in the
biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex.
evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and
that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1
gene, J. Biol. Chem., 277 (2002), pp. 38148–38158.

111

[26] M. Coscolla and S. Gagneux, Does M. tuberculosis genomic diversity explain
disease diversity?, Drug Discov. Today: Dis. Mech., 7 (2010), pp. e43–e59.

[27] L. S. Cowan, L. Mosher, L. Diem, et al., Variable-number-tandem repeat
typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 by
using mycobacterial interspersed repetitive units, J. Clin. Microbiol., 40 (2002),
pp. 1592–1602.

[28] T.F Cox and M.A.A. Cox, Multidimensional Scaling,Second Edition, Chapman
and Hall, London, UK, 2001.

[29] B. C. de Jong, P. C. Hill, A. Aiken, et al., Progression to active
tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in
the gambia, J. Infect. Dis., 198 (2008), pp. 1037–1043.

[30] J. De Leeuw, Applications of convex analysis to multidimensional scaling, Recent
Dev. Stat., (1977), pp. 133–146.

[31] A. Denise, M. Vasconcellos, and D.J.A. Welsh, The random planar graph,
Congr. Numerant., (1996), pp. 61–80.

[32] G. Di Battista, A. Garg, G. Liotta, et al., An experimental comparison of
four graph drawing algorithms, Comput. Geom., 7 (1997), pp. 303–325.

[33] T. Dwyer, Y. Koren, and K. Marriott, Drawing directed graphs using
quadratic programming, IEEE Transactions on Vis. Comput. Graph., 12 (2006),
pp. 536–548.

[34] T. Dwyer, K. Marriott, and P. J. Stuckey, Fast node overlap removal, in
Graph Drawing, Karlsruhe, Germany, 2006, Springer, pp. 153–164.

[35] P. Erdös and R.K. Guy, Crossing number problems, The Am. Math. Mon., 80
(1973), pp. 52–58.

[36] J. D. Ernst, G. Trevejo-Nunez, and N. Banaiee, Genomics and the
evolution, pathogenesis, and diagnosis of tuberculosis, J. Clin. Investig., 117 (2007),
pp. 1738–1745.

[37] Z. Fang, N. Morrison, B. Watt, et al., IS6110 transposition and
evolutionary scenario of the direct repeat locus in a group of closely related
Mycobacterium tuberculosis strains, J Bacteriol., 180 (1998), pp. 2102–2109.

[38] I. Fáry, On straight line representation of planar graphs, Acta Sci. Math. Szeged.,
11 (1948), pp. 229–233.

[39] S. Ferdinand, G. Valetudie, C. Sola, et al., Data mining of Mycobacterium
tuberculosis complex genotyping results using mycobacterial interspersed repetitive
units validates the clonal structure of spoligotyping-defined families, Res.
Microbiol., 155 (2004), pp. 647–654.

112

[40] I. Filliol, J. R. Driscoll, D. van Soolingen, et al., Global distribution of
Mycobacterium tuberculosis spoligotypes, Emerg. Infect. Dis., 8 (2002),
pp. 1347–1349.

[41] I. Filliol, J. R. Driscoll, D. van Soolingen, et al., Snapshot of moving
and expanding clones of Mycobacterium tuberculosis and their global distribution
assessed by spoligotyping in an international study, J. Clin. Microbiol., 41 (2003),
pp. 1963–1970.

[42] I. Filliol, A. S. Motiwala, M. Cavatore, et al., Global phylogeny of
Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP)
analysis: Insights into tuberculosis evolution, phylogenetic accuracy of other DNA
fingerprinting systems, and recommendations for a minimal standard SNP set, J.
Bacteriol., 188 (2006), pp. 759–772.

[43] L. Flores, T. Van, S. Narayanan, et al., Large sequence polymorphisms
classify Mycobacterium tuberculosis strains with ancestral spoligotyping patterns, J.
Clin. Microbiol., 45 (2007), pp. 3393–3395.

[44] R. Frothingham, H. G. Hills, and K. H. Wilson, Extensive DNA-sequence
conservation throughout the Mycobacterium tuberculosis complex, J. Clin.
Microbiol., 32 (1994), pp. 1639–1643.

[45] T. Fruchterman and E. Reingold, Graph drawing by force-directed placement,
Software-Practice Exp., 21 (1991), pp. 1129–1164.

[46] S. Gagneux, Host–pathogen coevolution in human tuberculosis, Philos.
Transactions Royal Soc. B: Biol. Sci., 367 (2012), pp. 850–859.

[47] S. Gagneux, K. DeRiemer, T. Van, et al., Variable host-pathogen
compatibility in Mycobacterium tuberculosis, Proc. Natl. Acad. Sci., 103 (2006),
pp. 2869–2873.

[48] S. Gagneux and P. M. Small, Global phylogeography of Mycobacterium
tuberculosis and implications for tuberculosis product development, Lancet Infect.
Dis., 7 (2007), pp. 328–337.

[49] E Gansner, Y Koren, and S North, Graph drawing by stress majorization, in
Graph Drawing, vol. 3383, New York City, NY, 2004, pp. 239–250.

[50] E. R. Gansner and Y. Hu, Efficient node overlap removal using a proximity
stress model, in Graph Drawing, Chicago, IL, 2009, Springer, pp. 206–217.

[51] E. R. Gansner, Y. Hu, and S. North, Visualizing streaming text data with
dynamic graphs and maps, in Graph Drawing, Bordeaux, France, 2013, Springer,
pp. 439–450.

[52] M.R. Garey and D.S. Johnson, Crossing number is NP-complete, SIAM J. on
Algebraic Discret. Methods., 4 (1983), p. 312.

113

[53] L. Getoor, J. T. Rhee, D. Koller, et al., Understanding tuberculosis
epidemiology using structured statistical models, Artif. Intell. Med., 30 (2004),
pp. 233–256.

[54] D. B. Goldstein, L. A. Ruiz, L.L. Cavalli-Sforza, et al., Genetic absolute
dating based on microsatellites and the origin of modern humans, Proc. Natl.
Acad. Sci., 92 (1995), pp. 6723–6727.

[55] J. Gorski, F. Pfeuffer, and K. Klamroth, Biconvex sets and optimization
with biconvex functions: A survey and extensions, Math. Methods Oper. Res., 66
(2007), pp. 373–407.

[56] M. M. Gutacker, B. Mathema, H. Soini, et al., Single-nucleotide
polymorphism-based population genetic analysis of Mycobacterium tuberculosis
strains from 4 geographic sites, J. Infect. Dis., 193 (2006), pp. 121–128.

[57] M. M. Gutacker, J. C. Smoot, C. A. Migliaccio, et al., Genome-wide
analysis of synonymous single nucleotide polymorphisms in Mycobacterium
tuberculosis complex organisms: Resolution of genetic relationships among closely
related microbial strains, Genet., 162 (2002), pp. 1533–1543.

[58] C. Gutwenger and P. Mutzel, An experimental study of crossing minimization
heuristics, in Graph Drawing, New York City, NY, 2004, Springer, pp. 13–24.

[59] S. Hachul and M. Jünger, Drawing large graphs with a potential-field-based
multilevel algorithm, in Graph Drawing, Limerick, Ireland, 2005, Springer,
pp. 285–295.

[60] D. Harel and Y. Koren, Graph drawing by high-dimensional embedding, in
Graph Drawing, Irvine, CA, 2002, Springer, pp. 207–219.

[61] R. Hershberg, M. Lipatov, P. M. Small, et al., High functional diversity in
Mycobacterium tuberculosis driven by genetic drift and human demography, PLoS
Biol., 6 (2008), p. e311.

[62] G. Hinton and S.T. Roweis, Stochastic neighbor embedding, Adv. Neural Inf.
Process. Syst., 15 (2002), pp. 833–840.

[63] A. E. Hirsh, A. G. Tsolaki, K. DeRiemer, et al., Stable association between
strains of Mycobacterium tuberculosis and their human host populations, Proc.
Natl. Acad. Sci. United States Am., 101 (2004), pp. 4871–4876.

[64] M. Jünger and P. Mutzel, Maximum planar subgraphs and nice embeddings:
Practical layout tools, Algorithmica., 16 (1996), pp. 33–59.

[65] M. Junger and P. Mutzel, 2-layer straightline crossing minimization:
Performance of exact and heuristic algorithms, J. Graph Algorithms Appl., 1
(1997), pp. 1–25.

[66] J. Kamerbeek, L. Schouls, A. Kolk, et al., Simultaneous detection and
strain differentiation of Mycobacterium tuberculosis for diagnosis and
epidemiology, J. Clin. Microbiol., 35 (1997), pp. 907–914.

114

[67] M. Kato-Maeda, EY Kim, L. Flores, et al., Differences among sublineages
of the east-asian lineage of Mycobacterium tuberculosis in genotypic clustering, The
Int. J. Tuberc. Lung Dis., 14 (2010), pp. 538–544.

[68] Y. Koren, On spectral graph drawing, Comput. Comb., (2003), pp. 496–508.

[69] K. Kremer, C. Arnold, A. Cataldi, et al., Discriminatory power and
reproducibility of novel DNA typing methods for Mycobacterium tuberculosis
complex strains, J. Clin. Microbiol., 43 (2005), pp. 5628–5638.

[70] K. Kremer, D. van Soolingen, R. Frothingham, et al., Comparison of
methods based on different molecular epidemiological markers for typing of
Mycobacterium tuberculosis complex strains: Interlaboratory study of
discriminatory power and reproducibility, J. Clin. Microbiol., 37 (1999),
pp. 2607–2618.

[71] K. Kuratowski, Sur le probleme des courbes gauches en topologie, Fund. Math.,
15 (1930), p. 79.

[72] E. Legrand, I. Filliol, C. Sola, et al., Use of spoligotyping to study the
evolution of the direct repeat locus by IS6110 transposition in Mycobacterium
tuberculosis, J. Clin. Microbiol., 39 (2001), pp. 1595–1599.

[73] M. Mäkelä, Survey of bundle methods for nonsmooth optimization, Optim.
Methods Softw., 17 (2002), pp. 1–29.

[74] B. Mathema, N. E. Kurepina, P. J. Bifani, et al., Molecular epidemiology of
tuberculosis: Current insights, Clin. Microbiol. Rev., 19 (2006), pp. 658–685.

[75] J. M. Musser, A. Amin, and S. Ramaswamy, Negligible genetic diversity of
Mycobacterium tuberculosis host immune system protein targets: Evidence of
limited selective pressure, Genet., 155 (2000), pp. 7–16.

[76] P. Mutzel, An alternative method to crossing minimization on hierarchical
graphs, in Graph Drawing, Rome, Italy, 1997, Springer, pp. 318–333.

[77] Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program.,
103 (2005), pp. 127–152.

[78] J. Nocedal and S. Wright, Numerical Optimization, Series in Operations
Research and Financial Engineering, Springer, New York, NY, 2006.

[79] C. Ozcaglar, A. Shabbeer, S. Vandenberg, et al., Sublineage structure
analysis of Mycobacterium tuberculosis complex strains using multiple-biomarker
tensors, BMC Genom., 12 (2011), p. S1.

[80] D. Portevin, S. Gagneux, I. Comas, et al., Human macrophage responses to
clinical isolates from the Mycobacterium tuberculosis complex discriminate between
ancient and modern lineages, PLoS Path., 7 (2011), p. e1001307.

[81] H. Purchase, Which aesthetic has the greatest effect on human understanding?,
in Graph Drawing, Rome, Italy, 1997, Springer, pp. 248–261.

115

[82] M. B. Reed, P. Domenech, C. Manca, et al., A glycolipid of hypervirulent
tuberculosis strains that inhibits the innate immune response, Nat., 431 (2004),
pp. 84–87.

[83] M. B. Reed, V. K. Pichler, F. McIntosh, et al., Major Mycobacterium
tuberculosis lineages associate with patient country of origin, J. Clin. Microbiol., 47
(2009), pp. 1119–1128.

[84] J. F. Reyes, A. R. Francis, and M. M. Tanaka, Models of deletion for
visualizing bacterial variation: An application to tuberculosis spoligotypes, BMC
Bioinforma., 9 (2008), p. 496.

[85] R.T. Rockafellar, Convex Analysis, vol. 28, Princeton University Press,
Princeton, NJ, 1997.

[86] S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally
linear embedding, Sci., 290 (2000), p. 2323.

[87] A. Ruszczynski, Nonlinear Optimization, vol. 13, Princeton University Press,
Princeton, NJ, 2011.

[88] M. Sebban, I. Mokrousov, N. Rastogi, et al., A data-mining approach to
spacer oligonucleotide typing of Mycobacterium tuberculosis, Bioinforma., 18
(2002), pp. 235–243.

[89] A. Shabbeer, L. Cowan, C. Ozcaglar, et al., TB-Lineage: An online tool
for classification and analysis of strains of Mycobacterium tuberculosis complex,
Infect. Genet. Evol., 12 (2012), pp. 789–797.

[90] A. Shabbeer, C. Ozcaglar, B. Yener, et al., Web tools for molecular
epidemiology of tuberculosis, Infect. Genet. Evol., 12 (2012), pp. 767–781.

[91] Ben Shneiderman, Tree visualization with tree-maps: 2-d space-filling approach,
ACM Transactions on graphics (TOG)., 11 (1992), pp. 92–99.

[92] M. D. Shriver, L. Jin, E. Boerwinkle, et al., A novel measure of
genetic-distance for highly polymorphic tandem repeat loci, Mol. Biol. Evol., 12
(1995), pp. 914–920.

[93] C. Sola, I. Filliol, M. C. Gutierrez, et al., Spoligotype database of
Mycobacterium tuberculosis: Biogeographic distribution of shared types and
epidemiologic and phylogenetic perspectives, Emerg. Infect. Dis., 7 (2001),
pp. 390–396.

[94] S. Sreevatsan, X. Pan, K. E. Stockbauer, et al., Restricted structural gene
polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily
recent global dissemination, Proc. Natl. Acad. Sci., 94 (1997), pp. 9869–9874.

[95] E. M. Streicher, T. C. Victor, G. van der Spuy, et al., Spoligotype
signatures in the Mycobacterium tuberculosis complex, J. Clin. Microbiol., 45
(2007), pp. 237–240.

116

[96] K. Sugiyama and K. Misue, Graph drawing by the magnetic spring model, J.
Vis. Lang. Comput., 6 (1995), pp. 217–231.

[97] T. Sun and S. Chen, Locality preserving cca with applications to data
visualization and pose estimation, Image Vis. Comput., 25 (2007), pp. 531–543.

[98] Y. J. Sun, R. Bellamy, A. S. Lee, et al., Use of mycobacterial interspersed
repetitive unit-variable-number tandem repeat typing to examine genetic diversity
of Mycobacterium tuberculosis in Singapore, J. Clin. Microbiol., 42 (2004),
pp. 1986–1993.

[99] P. Supply, C. Allix, S. Lesjean, et al., Proposal for standardization of
optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat
typing of Mycobacterium tuberculosis, J. Clin. Microbiol., 44 (2006), pp. 4498–4510.

[100] P. Supply, S. Lesjean, E. Savine, et al., Automated high-throughput
genotyping for study of global epidemiology of Mycobacterium tuberculosis based on
mycobacterial interspersed repetitive units, J. Clin. Microbiol., 39 (2001),
pp. 3563–3571.

[101] R. Tamassia, Handbook of graph drawing and visualization, Chapman &
Hall/CRC, London, UK, 2007.

[102] R. Tamassia and I.G. Tollis, Planar grid embedding in linear time, IEEE
Transactions on Circuits Syst., 36 (1989), pp. 1230–1234.

[103] LJP Van der Maaten, EO Postma, and HJ Van Den Herik, Dimensionality
reduction: A comparative review, J. Mach. Learn. Res., 10 (2009), pp. 1–41.

[104] G. D. van der Spuy, K. Kremer, S. L. Ndabambi, et al., Changing
Mycobacterium tuberculosis population highlights clade-specific pathogenic
characteristics, Tuberc. (Edinb)., 89 (2009), pp. 120–125.

[105] J. D. van Embden, M. D. Cave, J. T. Crawford, et al., Strain identification
of Mycobacterium tuberculosis by DNA fingerprinting: Recommendations for a
standardized methodology, J. Clin. Microbiol., 31 (1993), pp. 406–409.

[106] D. Van Soolingen, Molecular epidemiology of tuberculosis and other
mycobacterial infections: Main methodologies and achievements, J. Intern. Med.,
249 (2001), pp. 1–26.

[107] I. Vitol, J. Driscoll, B. Kreiswirth, et al., Identifying Mycobacterium
tuberculosis complex strain families using spoligotypes, Infect. Genet. Evol., 6
(2006), pp. 491–504.

[108] R. M. Warren, E. M. Streicher, S. L. Sampson, et al., Microevolution of
the direct repeat region of Mycobacterium tuberculosis: Implications for
interpretation of spoligotyping data, J. Clin. Microbiol., 40 (2002), pp. 4457–4465.

[109] R. E. Wendell and A. P. Hurter, Minimization of a non-separable objective
function subject to disjoint constraints, Oper. Res., 24 (1976), pp. 643–657.

117

[110] G.J. Wills, Nicheworks: Interactive visualization of very large graphs, J. Comput.
Graph. Stat., 8 (1999), pp. 190–212.

[111] W. I. Zangwill, Convergence conditions for nonlinear programming algorithms,
Manag. Sci., 16 (1969), pp. 1–13.

[112] X. Zhu, S. Chang, K. Fang, et al., MyBASE: A database for genome
polymorphism and gene function studies of mycobacterium, BMC Microbiol., 9
(2009), p. 40.

APPENDIX A

APPENDIX

A.1 Graphs and Spoligoforests Generated by MAA

Figure A.1: Embeddings of spoligoforests of Haarlem, X, and LAM sublin-
eages. Graph (b), that optimizes the MDS objective and gen-
erated using Neato, preserves proximity relations but has edge-
crossings. In graph (a), the proposed approach eliminates all
edge crossings with little change in the overall stress.

118

119

Figure A.2: Embeddings of spoligoforests of LAM (Latin-American-
Mediterranean) sublineages using (a)MAA, (b)Neato,
(c)Twopi and (d) Laplacian Eigenmaps. The proposed
method, MAA, eliminates all edge crossings and shows the
most genetically relevant arrangements within the sublin-
eages.

120

Figure A.3: Embeddings of spoligoforests of M. africanum sublineages. The
M. africanum lineage is divided into two distinct sublineages.
However, the distinction between the two sublineage is not visible
in graph (c) produced using the radial graph drawing algorithm
Twopi. Graph (b), drawn using Neato tool with stress majoriza-
tion, clearly shows the separation, but is difficult to understand
because of edge crossings. Graph (d), drawn using Laplacian
eigenmaps preserves proximity, but the edge-crossings are not
eliminated. Graph (a), drawn using the proposed approach elim-
inates all edge crossings with little change in the overall stress,
while preserving proximity between genetically related strains.

121

Figure A.4: Embeddings of spoligoforests of 7 SpolDB4 sublineages. Notice
that there are many connected components in the graph. Graph
(b), drwan using Neato with stress majorization preserves prox-
imity, but otroduces edge crossings. Graph (c), drawn using
radial layout implemented in Graphviz Twopi tool, eliminates
edge crossings, but the proximity of genetically related strains
belonging to different connected components is not preserved.
In graph (d), Laplacian Eigenmap embedding based on weighted
Laplacian groups genetically related strainsclosely, but there are
edge crossings which makes it harder to distinguish the nodes.
In graph (a), the proposed approach eliminates all edge crossings
with little change in the overall stress.

122

(a) (b)

(c) (d)

(e) (f)

Figure A.5: Embeddings for randomly generated graph in R
7 with 50 nodes

and 40 edges using (a) Stress majorization and (b) MAA. Em-
beddings for randomly generated graph in R

7 with 50 nodes and
40 edges using (c) Stress majorization and (d) MAA. Embed-
dings for randomly generated graph in R

7 with 50 nodes and 40
edges using (e) Stress majorization and (f) MAA.

A.2 Spoligoforests Generated by MAA+

123

(a) (b)

Figure A.6: Embeddings for randomly generated graph in R
7 with 50

nodes and 40 edges using (a) Stress majorization and (b)
MAA.

124

Figure A.7: Spoligoforest for all sublineages BOV 1, BOV 2 and BOV 3
of M. bovis. Layout generated using (a) MAA+ (b)MDS (c)
GraphViz Twopi (d) Laplacian Eigenmaps. MAA+ improves
on MDS in number of crossings with marginal increase in
stress.

125

Figure A.8: Spoligoforest for all sublineages predicted to belong to the
Euro-American Haarlem lineage. Layout generated using (a)
MAA+ (b)MDS (c) GraphViz Twopi (d) Laplacian Eigen-
maps. MAA+ improves on MDS in number of crossings
with marginal increase in stress.

126

Figure A.9: Spoligoforest for all sublineages predicted to belong to the
Euro-American LAM lineage. Layout generated using (a)
MAA+ (b)MDS (c) GraphViz Twopi (d) Laplacian Eigen-
maps. MAA+ improves on MDS in number of crossings
with marginal increase in stress.

