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ABSTRACT

The goal of this project was to develop biologically appropriate mathematical models 

for genotyping and patient data and use them to analyze and exploit the information 

in heterogeneous genotyping and epidemiological databases. These databases can 

be used to address fundamental questions in public health, particularly dynamics 

of emerging infectious diseases. This work focuses on Mycobacterium tuberculosis 

complex (MTC) because tuberculosis (TB) presents a reemerging serious health 

threat worldwide; the most optimistic scenarios predict in excess of 80 million new 

cases and 20 million deaths in the coming decade. Moreover, mycobacteria are one 

of the most widely sequenced pathogenic groups, and global TB databases currently 

exist.

Advances in molecular methods contribute significantly to our understanding 

of the spread of TB. Differentiating between various patent isolates and using the 

data to guide the efforts of TB control programs are major applications for MTC 

genotyping. Our research develops mathematical models for spacer oligonucleotide 

typing (spoligotyping) and demographic data on TB patients. The spoligotyping 

method exploits polymorphism in the direct repeat locus of chromosome of the 

MTC bacteria. Spoligotyping produces a simple binary pattern for each TB isolate 

and is widely used for MTC strain discrimination.

We present SPOTCLUST, a novel mixture modeling approach to advance 

global studies of MTC genotyping data. SPOTCLUST incorporates biological in­

formation on spoligotype evolution without attempting to derive the full phylogeny 

of MTC. The algorithm is applied to spoligotyping data identified among strains 

isolated between 1996 and 2004, primarily from New York State TB patients. Our 

results both confirm previously defined families of MTC strains and suggest cer­

tain new families. We demonstrate on New York City demographic data how the 

resulting models can potentially form the basis of TB control tools using genotyp­

ing. Several alternative methods of analysis of MTC genotype and patient data are 

explored. Improvements to the current method are suggested. Future work will con-

x
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centrate on developing methods for merging probabilistic models for spoligotypes 

and results from other TB genotyping methods with traditional epidemiological 

data.
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CHAPTER 1 
Introduction

This chapter serves to describe the motivation for this work induced by the world­

wide tuberculosis (TB) epidemics problem and the increasing role of molecular tech­

niques in the progress toward TB control. The principal TB genotyping methods 

are presented. The chapter also delineates the approaches developed to date for 

classification of Mycobacterium tuberculosis complex (MTC) strains, and introduces 

the approach adopted in this work. Finally, the content of the thesis is outlined.

1.1 Motivation
TB is primarily a disease of the respiratory system, but may also affect bones, 

urinary tract, reproductive and digestive systems, and skin. TB causing bacteria 

are obligate human and animal pathogens, with a delay between initial infection 

and the development of clinical disease often up to 5 years. TB is one of the most 

widespread infectious diseases in the world, infecting more than 2  billion persons, 

and is expanding due to the HIV /A ID S epidemics and complicated by the emergence 

of multi-drug resistant MTC strains. One third of the world’s population is infected 

with TB. More than two million people die each year of TB, despite the fact that it 

is curable with early detection and prompt treatment.

Historically, epidemiologists tracked transmission of TB without knowing the 

genetic fingerprints of the MTC strains they were following. This greatly increased 

the difficulty deciphering the spread of MTC strains. If two people have TB strains 

with matching DNA fingerprints, it is likely that their infections are directly or in­

directly linked to each other in a transmission chain. Tracking the source of TB and 

identifying others who may have been infected becomes much faster and more ac­

curate when strain types are known. Although precise DNA fingerprinting methods 

have now been developed to identify and track MTC strains, mycobacteriologists in 

hospitals and public health laboratories do not routinely perform these tests and the 

bacteria are not genetically characterized. In the mid-1990s, the Centers for Disease

1
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Control and Prevention established a pilot program to evaluate the use of molecular 

strain typing of MTC isolates in state TB control programs. Molecular typing of 

MTC strains became an integral part of very successful TB control methods devel­

oped by the New York City Department of Health (NYCDOH), the Public Health 

Research Institute (PHRI), and the Wadsworth Center. Regional and international 

programs for TB genotyping have been proposed.

Differentiating among various patient isolates and using the data for contact 

investigations and epidemiological cluster analysis are major applications for MTC 

strains genotyping. Molecular methods may contribute significantly to classical epi­

demiological studies, but as MTC genotype databases accumulate data, the tools 

for analyzing this information do not keep pace. Rapidly expanding national and 

international databases necessitate development of computational methods to ana­

lyze and exploit the large volumes of heterogeneous data. Despite some successful 

attem pts, TB epidemiologists are still in great need for automated analytical and 

decision-making tools for exploiting genotype databases. Our work presents a first 

step in an ongoing project dedicated to statistical modeling of MTC genotyping and 

patient data.

1.2 MTC genotyping
Different genotyping methods are used to generate fingerprints of MTC strains, 

the most widely employed of which are spoligotyping [6 6 ], insertion sequence 6110 

restriction fragment length polymorphism (IS61 70-RFLP) [147], and mycobacterial 

interspersed repetitive units (MIRU) typing [84, 132, 133]. Another method, also 

useful for inference of phylogeny of MTC strains, is based on synonymous single 

nucleotide polymorphisms (sSNPs) [50]. An ideal typing method should be rapid, 

reproducible, inexpensive, and directly applicable to the problem [149]. A single 

DNA fingerprinting method sufficiently discriminating for every MTC clinical isolate 

does not exist [27]. It is highly advantageous to use multiple genetic markers in 

combination with epidemiological data [83].

The primary goal of genotyping is to discriminate MTC isolates to be able 

to discern recent transmission of TB versus reactivation of latent infection thus al­
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lowing early identification and control of outbreaks. Also, using methods that are 

reproducible and easily comparable between laboratories allows creation of global 

databases, which can be extremely useful in tracking transmission routes of TB and 

can help develop effective protocols for TB control practices. Molecular methods 

can be efficiently exploited to guide traditional epidemiological approach of a clus­

ter, a collection of MTC strains with identical genotypes, investigation. Cluster 

investigation is a costly, labor and time-consuming process, which complicates its 

use in underdeveloped countries with a high prevalence of TB.

This research focuses on developing mathematical models for spoligotyping 

data. Spoligotyping assay is based on polymorphism in the direct repeat (DR) locus 

of the MTC bacterial chromosome [6 6 ]. The DR locus consists of well-conserved 

direct repeats interspersed with unique spacer sequences. The region comprising 

the DR plus the adjacent spacer has been termed the direct variable (or variant) 

repeat (DVR) [48]. Spoligotyping differentiates MTC strains by determining the 

absence or presence of 43 defined spacer sequences.

Spoligotyping is a fast and highly reproducible method. The resulting fin­

gerprint has a simple binary format, which permits exchange of data and facilitates 

construction of large collaborative databases [35, 36]. Octal representation of spolig­

otypes has also been adopted [22], Previous studies have grouped spoligotypes into 

nine major families [113] that can be further broken down into 36 subfamilies in the 

global database SpolDB3 using visual rules [35]. Groups of related spoligotypes were 

interchangeably called (sub)families, (sub)clades, and classes [35, 36]. Throughout 

this thesis, we will most often use the term family for a collection of related spolig­

otypes. Occasionally, the notation of cluster will be employed. Since this work is of 

interest for epidemiologists, we specifically indicate when we utilize cluster notation  

in epidemiological language.

1.3 MTC strain classification
Prior methods for automatic classification of MTC strains into families based 

on spoligotyping used decision trees induced from the DB1 spoligotype database 

labeled by a human expert [113]. Decision trees are a form of supervised classi­
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fiers, since the families, defined from visual observation of the data, were assumed 

to be known a priori. “Uninformative” examples were removed using a prototype 

selection algorithm [113]. While producing interpretable results, the decision tree 

approach required labeling the data, an error-prone and labor-intensive process com­

pounded by the fact that the phylogeny of MTC families is still under investigation. 

Moreover, the construction algorithm for decision trees treats spoligotype patterns 

as simple binary data, not taking into account their biological characteristics, thus 

oversimplifying MTC strains classification task.

Generative mixture models [100] are a robust form of unsupervised classifiers. 

Our unsupervised generative mixture models can both identify potential MTC fami­

lies and create good predictive models for spoligotype classification without requiring 

labeling and preprocessing. Moreover, this technique can be customized to exploit 

prior information on TB causing bacteria. Our underlying mixture model assumes 

that within an MTC family, the spacers can be treated as independent Bernoulli 

variables, which is the assumption used in the Naive Bayes classifier. This classi­

fier has been reported to perform surprisingly well despite the deliberately naive 

independence assumption [5, 69, 8 6 ].

The multivariate Bernoulli mixture model treats features as conditionally in­

dependent given the class. Here the features are the absence or presence of spacers. 

It is widely hypothesized that spoligotypes evolve by deletion of a single or multiple 

contiguous spacers and that spacer duplication is very unlikely [148, 154]. We have 

incorporated this knowledge into our algorithm by introducing “Hidden Parents” 

into the model. We used the expectation-maximization (EM) algorithm to find 

maximum likelihood (ML) estimates of the mixture m odel’s parameters. Thus, we 

combined the Naive Bayes assumption with the EM algorithm, employing one of 

the promising approaches in unsupervised classification [145].

The performance of the method is greatly dependent on the initialization of the 

EM algorithm and the number of components in the mixture model. The number of 

families present in the spoligotype data and the probability distribution for each of 

them were estimated using Monte Carlo cross-validation (MCCV) technique, which 

was developed to extract as much information from the data as possible, without
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any prior knowledge [118]. We used the stability or average best match [55] and 

log-likelihood to choose a final mixture model. The results were compared to the 

families identified using prototypes based on the visual recognition rules extracted 

from the SpolDB3 database [35]. Evaluating the NYC patient data in the context of 

the identified genotype families proved the usefulness of grouping MTC strains by 

their spoligotypes while taking into account the suggested direction of their evolution 

toward the loss of the DVRs.

The results of the application of the Bernoulli mixture models to spoligotyping 

data confirm some previously defined spoligotyping families [35, 113], as well as 

identify new families. It may be suggested that some of the prototypes resulting from 

human-expert-derived visual recognition rules are redundant. Probabilistic methods 

are well suited for modeling spoligotyping data and should be refined to better fit 

the current, albeit limited, knowledge on the evolution of the DR genomic locus. 

Employing the first-order Markov process to model Hidden Parents resulted in an 

improvement in the quality of the identified families. Future efforts will concentrate 

on determining patterns of the DVRs’ interdependencies and introducing a hierarchy 

of spoligotyping patterns. The refined models should be enriched with data obtained 

by using other genetic markers and with epidemiological data; data fusion methods 

will be developed to efficiently assimilate information contained in these diverse 

types of data.

1.4 Structure of the thesis
This thesis is organized as follows:

Chapter 2 reviews related work on molecular epidemiology and phylogeny of 

MTC bacteria as well as prior work on computational analysis of MTC genotyping 

data.

Chapter 3 provides background on clustering methods, particularly on the 

mixture model approach. It also introduces the Naive Bayes assumption underly­

ing our Bernoulli mixture model approach and presents the EM algorithm that is 

widely used to estimate parameters of mixture models. Cluster quality assurance 

methodologies are discussed.
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In Chapter 4, we describe SPOTCLUST, the proposed approach to cluster 

spoligotyping data. This chapter includes description of the data used for the anal­

ysis, adopted probabilistic framework, newly introduced Hidden Parents that ensure 

the identification of biologically relevant families, and initialization and validation 

techniques for our mixture models. We report and discuss the results of the appli­

cation of our approach to the New York State spoligotyping data.

Analysis of demographic data on New York City patients within the context of 

the families identified by our method is presented in Chapter 5. Interesting trends 

were observed while indicating that the probabilistically defined families can provide 

useful insights into MTC strain data and help guide TB control efforts.

Chapter 6  presents several alternative methods of analysis of spoligotyping and 

patient data. We showed that joint modeling of patient and genotype data can be 

advantageous for identification of MTC strain families. Constructing cluster ensem­

bles is suggested as a valuable tool for MTC strain data analysis and visualization. 

We also demonstrate that graphical models are a natural means to model our data.

Chapter 7 concludes the results presented in this thesis and outlines future 

directions.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 2 
Molecular and computational methods for TB control

In this chapter, we review the genotyping techniques customarily utilized for the 

objectives of the TB molecular epidemiology. Both advantages and drawbacks of 

each of the methods are elaborated. Methods of phylogenetic analysis of MTC 

strains are described. Finally, the current state of the research area concerned with 

the computational analysis of genotyping data on MTC strains is presented.

2.1 Molecular epidemiology of TB
Ideally, to access genetic variability between bacterial strains, we would se­

quence and then compare their whole genomes. This, however, is a time-consuming, 

labor and cost-intensive process, which is impractical for TB control. To overcome 

these difficulties, only specific genomic loci that bear enough dissimilarity among 

different strains are used to produce genotype fingerprints of Mycobacterium tu­

berculosis complex (MTC) isolates. These molecular genotyping methods exploit 

the polymorphism in the number and genomic location of repetitive elements. In 

general, to be used as a genetic marker, an element should be locus-specific, poly­

morphic, and easily genotyped.

MTC bacteria are characterized by unusually low polymorphism in structural 

gene sequences [127], The fact that there are very few silent nucleotide substitutions 

in the MTC genome has been interpreted as indicating that MTC is evolutionary 

relatively young, around 15,000 to 20,000 years old, and that it has disseminated 

globally recently [127]. MTC has a strongly clonal population structure [4, 127, 135].

Restriction fragment length polymorphism (RFLP) analysis with probes de­

rived from the insertion element IS 6110, introduced in 1993 [147], is the “gold stan­

dard” method for typing MTC strains [93]. IS 6110 is an insertion element that is 

present in 99% of MTC clinical isolates [67]. All copies of IS 6110 are nearly identical 

in sequence. However, their copy number varies from 0 to 25 and the location in 

the genome differs, leading to different RFLP patterns [15]. IS 6110, once thought

7
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to transpose itself randomly within the MTC genome, has now been shown to have 

preferred sites (hotspots) for integration in the genome [32, 48, 73, 77, 153]. Strains 

with fewer copies of the IS6110 have more homogenous fingerprints than do strains 

with multiple copies of IS 6110 [93]. The frequency of IS 6110 transposition increases 

with the number of copies of this element [137].

ISdlld -R FL P is characterized by good discriminatory power and high repro­

ducibility. However, it is labor-intensive, requiring culturing the slow-growing MTC 

bacteria for several weeks, and is difficult to standardize between laboratories [9]. 

Moreover, this method does not provide sufficient strain discrimination when fewer 

than five [126, 149] or too high number [8 ] of IS611 0-hybridizing bands are present. 

Another RFLP-based method is a polymorphic GC-rich sequence-RFLP [17, 101], 

which has the same disadvantages as the IS6110-RFLP [93].

Development of PCR-based genotyping methods has greatly improved typing 

of MTC strains. PCR-based methods do not require culturing the bacteria, and only 

small amounts of DNA, which can be obtained directly from the clinical specimen, 

are sufficient for analysis.

The most widely used PCR-based method is spoligotyping [6 6 ]. It is based on 

the polymorphism in the direct repeat (DR) locus of the mycobacterial chromosome. 

The DR locus is one of the most well studied loci of the MTC genome showing con­

siderable strain-to-strain polymorphism [32]. The function of the DR locus in MTC 

bacteria is presently unknown [148]. The well-conserved 36-bp direct repeats are 

interspersed with unique spacer sequences varying from 35 to 41 bp in size. The 

order of the spacers was found to be well conserved [148]. The region comprising the 

DR plus the adjacent spacer has been termed the direct variable repeat (DVR) [48]. 

Currently 94 different spacer sequences have been identified, of which 43 are used 

for MTC strain differentiation [148]. Clinical isolates of TB causing bacteria (M . 

tuberculosis sensu stricto, M. bovis, M. africanum, M. microti, and M. canettii) can 

be differentiated by the presence or absence of one or more spacers. Spoligotypes are 

believed to evolve by deletion of one discrete or multiple contiguous spacers. Various 

genetic mechanisms, such as homologous recombination, transposition, DNA repli­

cation slippage, or point mutation, can cause the deletion [93, 154], The D R  region
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is one of the hotspots for the IS6110 integration [48, 77, 148]. The frequencies of 

deletions in the DR locus were suggested to depend on strain family [154], Beijing 

strain family, for example, is extremely stable and appears to be in an evolutionary 

fixed state [148]. The rate of the evolution of DR variants is slower than that of 

IS6110 patterns [154].

Another PCR-based method, increasingly used in molecular epidemiology of 

TB, employs variable numbers of tandem repeats (VNTR) [42] of genetic elements 

called mycobacterial interspersed repetitive units (MIRU) [84, 132, 133]. MIRU 

are direct tandem DNA repeats of 40-100 bp in size, identified in 41 different loci 

within intergenic regions of the MTC genome. The number of repeats of these 

interspersed in the MTC genome loci varies among different MTC strains. Out of 

the 41 loci, 12 were found to have sufficient polymorphism to be used as genetic 

markers [132, 135]; therefore, the MIRU-based genotype is a 12-digit number. The 

MIRU profiles were found to remain stable in vivo for at least 18 months [84], 

The function of MIRU elements is not known yet; however, it was suggested that 

these human minisatellite-like VNTR regions may play a role in the evolution of 

the human host genome [134], The discriminatory power of MIRU is comparable to 

that of the ISdlld -R F L P  method [84],

A single genotyping method does not posses enough discriminatory power to 

differentiate all unique isolates; therefore, two or more independent genetic markers 

should be used to achieve sufficient discrimination of MTC strains. The choice of the 

markers depends on the specific characteristics of MTC strains. Spoligotyping alone 

provides a good first-step discriminatory test, but in some cases should be followed 

by analyzes that are based on other genetic markers. In the cases when IS6110 

element disrupts DVRs, which results in their apparent loss, spoligotyping must be 

complemented by a secondary typing method to accurately asses the relationship 

of MTC strains [154], Some spoligotype families, such as, for example, Beijing, are 

large, and their members can be discriminated further only by using other typing 

methods. The MIRU genotyping can also serve as a powerful first-line discrimination 

method [109]. Previous work showed that MIRU technique performs better than 

IS6110-RFLP  when MTC strains have low copy numbers of IS6110 [19, 124, 134].
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Soini et al. [120] found that spoligotyping also helped discriminate this type of MTC 

strains.

2.2 Phylogeny of TB causing bacteria
For the purposes of molecular epidemiology, bacterial population genetic re­

search aims at understanding the relationships between traits such as virulence, 

transmissibility, host specificity, and others, and mapping these traits onto the phy­

logenetic tree [50, 95].

MTC strains, as mentioned above, are characterized by atypically low degree 

of structural variation in the housekeeping genes and identical 16S rRNA sequences 

[127]. This led to the proposition that members of MTC appeared relatively re­

cently [127]. Most MTC genetic variability is associated with insertion sequences, 

repetitive elements, and drug resistance phenotypes. However, MTC strains exhibit 

high phenotypic diversity. Also, their pathogenicity and host range differ signifi­

cantly [12]. It was suggested that M. tuberculosis (sensu stricto) had evolved from 

M. bovis, which causes bovine TB, by specific adaptation of the animal pathogen 

to the human host [128]. This had been speculated before the sequencing of the 

whole genomes of MTC members was completed. W hen the complete genome of 

the M. tuberculosis clinical strain CDC1551 was sequenced [37] and compared to the 

whole-genome of the M. tuberculosis laboratory strain H37Rv [18] to identify poly­

morphic sequences with “potential relevance to disease pathogenesis, immunity, and 

evolution” , large-sequence and single-nucleotide polymorphisms (SNPs) in numer­

ous genes were discovered [37]. Results of another study proposed a new scenario 

on MTC evolution, showing that the common ancestor of the TB causing bacteria 

resembled M. tuberculosis or M. canettii and could have been a human pathogen 

[12]. This version placed M. tuberculosis closer to the common ancestor of MTC 

than M. bovis [12]. The completion of the M. bovis genome sequence confirmed this 

scenario [44],

Synonymous SNPs (sSNPs) are evolutionary neutral since they do not change 

the structure of proteins [49]. Thus, they are useful for large-scale studies reveal­

ing evolutionary relationships among bacterial strains, especially in strongly clonal
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species [50]. MTC strains have, on average, approximately one sSNP per 10,000 

nucleotide sites [96]. Variation in two nonsynonymous (result in a change in trans­

lated amino acids) SNPs, at katG  codon 463 (CTG or CGG) and at gyrA  codon 95 

(ACC to AGC), divided MTC strains into three principal genetic groups: ancestral 

group 1, and groups 2 and 3, where group 2 is ancestral to group 3 [127]. Eight 

clusters of related genotypes were identified in M. tuberculosis based on 148 sSNPs 

[50]. High-throughput sSNP genotyping has a potential to be used for rapid iden­

tification of clinical isolates. However, this method is dependent on availability of 

complete genome sequences of bacterial strains.

Several insertion sequences had been identified in MTC strains; they are re­

viewed elsewhere [93]. IS 6110 is the most widely used genetic marker to differentiate 

MTC strains. ISW 40-RFLP-based phylogeny divided MTC strains into high-copy 

strains and low-copy strains [38], but genotyping using sSNP ruled out the idea 

that strains of M. tuberculosis with many IS 6110 copies and few IS 6110 copies are 

genetically distinct populations [50]. The variations in IS£iA?-RFLP fingerprints, 

rather than the IS 6110 copy number, are widely used for inferring relationships 

among MTC strains.

Spoligotype-based phylogeny of MTC strains has been recently derived [28, 

123]. Eight independent genetic markers, IS6110, IS 1081, the DR locus, and five 

VNTRs were used to infer phylogenetic relationships among a set of 90 clinical 

isolates of MTC bacteria [125]. However, integration of the information obtained 

from different genetic markers is not trivial [4]. To derive MTC strains phylogeny, 

the investigators used phylogenetic algorithms incorporated into different software 

packages, the most common of which were Taxotron (for example, [21]) and Bion­

umerics [122]. The Jaccard index [58], which does not account for the biological 

nature of spoligotypes but nevertheless has become popular in spoligotyping data 

analysis [121], was utilized as a means of pairwise comparison of spoligotypes. The 

authors assessed the performance of several phylogenetic tree construction methods 

on spoligotyping data [28]. In one of the most recent papers, combined spoligotyp- 

ing/V NTR data were used to build a genetic network [122],

Although these studies provided useful insights into the global distribution
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and evolution of spoligotypes and other DNA fingerprints, they did not produce 

well defined phylogenetic relationships between MTC strains.

Most of the algorithms for phylogenetic trees are based on the assumption 

of marker independence. This is suitable, with some approximation, when MIRU, 

IS 6110, or SNP data are analyzed, since these elements are distributed randomly in 

the chromosome and can be assumed to evolve independently. Results of previous 

work suggested that the deletion of contiguous DVR sequences did not occur sequen­

tially, but rather by a single loss of several adjacent DVRs. This complicates the 

use of spoligotypes for deriving MTC phylogeny [154]. We believe that Dollo par­

simony method or its modifications could potentially be suitable for deriving MTC 

phylogeny using spoligotype data, since it asserts that in evolution it is harder to  

gain a complex feature than to lose it [33]. This has not been investigated in this 

work and can be suggested as one of the future directions.

In summary, despite some success in using SNPs [4, 50, 127], spoligotyping [28], 

and spoligotyping/VNTR [122] data for deriving the phylogeny of MTC strains, the 

global picture still remains to be elucidated.

2.3 Data mining of MTC genotyping data: Current state
The first work on automatic classification of spoligotyping patterns described 

decision trees induced from the global spoligotyping database DB1 [113]. The spolig- 

otyping patterns contained in the database were visually observed and manually la­

belled by a human expert, thus grouping the data into families. Most of the spolig­

otyping families of M. tuberculosis strains were named according to their prevalence 

in particular countries or regions. Some families were named by the place of their 

first discovery. For example, M. tuberculosis Haarlem family was initially identi­

fied in Dutch town, Haarlem [70]. Families such as M. tuberculosis LAM, where 

“LAM” stands for Latin American and Mediterranean, M. tuberculosis EAI (East 

African-Indian), and M. tuberculosis CAS (Central Asian), were named from the 

geographical areas where their members most commonly occur [125].

The C4.5 induction algorithm was employed to build the decision trees and 

produce “intelligible knowledge rules” from labelled spoligotyping data. Before this,
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a prototype selection algorithm was applied to eliminate “uninformative” examples. 

The authors claimed that one of the most significant contributions of their paper 

was in developing a method of automatic classification of MTC strains based on 

their spoligotype patterns using less than 43 spacers. They suggested eliminating 

the detection of the “uninformative” spacers from the laboratory setup. The spolig­

otype patterns were classified into nine major families that were called clades [113]. 

Another work of the same research group concentrated on using the decision tree 

approach to classify MIRU data for the validation of the families previously defined 

by spoligotyping [34],

The potential problem with the decision tree approach comes from the fact 

that the MTC phylogeny has yet to be resolved; therefore, the correctness of the 

manual labelling of the spoligotyping data is questionable. DB1 contained 342 

spoligotypes and they all had to be labelled by a human expert. Moreover, the 

elimination of some of the spacers from the analysis does not seem reasonable, 

since the spoligotype is obtained from a single locus in the MTC chromosome. 

Interdependencies of some spacers were suggested, which indicates that we need to 

look at the spoligotyping pattern as a whole. Besides, spoligotyping is fast and 

inexpensive; therefore, detecting fewer spacers would not significantly decrease the 

cost of labor and laboratory materials.

Family

M. tuberculosis Beijing 

M. Aows-BCG 

M. africanum 

M. tuberculosis H37Rv 

M. microti

Binary description

Figure 2.1: Examples of spoligotype family prototypes extracted using visual recognition 
rules from SpolDB3 database. Black cube indicates spacer, white cube indi­
cates absence of spacer

Two highly cited papers described the current content of the global spoligo­

typing database SpolDB3 [35, 36]. Visual recognition rules were used to define 36 

spoligotype families within the database [35]. Figure 2 .1  gives an example of binary
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description of prototype spoligotypes for several such families. The authors also as­

sessed the biogeographical specificity and the geographical spreading of spoligotype 

shared types (found in at least two patients) [36]. When this thesis was near com­

pletion, SpolDB4, an update of the global spoligotyping database, became publicly 

available [13]. We discuss SpolDB4 in Chapter 6 .

In conclusion, epidemiological practice still lacks robust computational tools to 

analyze genotyping and epidemiological data. These tools should take into account 

biological characteristics of the data and be easily modified as new data become 

available.
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CHAPTER 3 
Mixture modeling for clustering

This chapter reviews mixture models and presents the Bernoulli mixture modeling

gorithm used to learn the parameters of the mixture models is described. Commonly 

used cluster validation techniques are discussed.

3.1 Clustering methods. Mixture models
Clustering or unsupervised classification is a process of grouping the objects in 

the data by some similarity measure. The clustering methods can be divided into two 

major categories: discriminative (distance-based methods, such as the well known 

k-means algorithm) and generative (model-based) methods [156]. Another common 

approach is to divide the clustering methods into partitional and hierarchical [60]. 

A partitional (flat) clustering divides the data samples into some number of groups. 

The classic example of this is the /c-means algorithm. Hierarchical methods return a 

set of nested clusterings. These methods can either be agglomerative, when groups 

of data points are merged, or divisive, when at each step of the procedure the groups 

are divided.

Distance-based methods require a pairwise distance measure between data 

points, the most commonly used of which are Euclidean and Mahalanobis distances. 

Euclidean distance is the geometric distance in the multidimensional space and is 

computed as:

Calculating the distance between all pairs of data points is computationally 

inefficient and has a complexity of at least 0 ( N 2), where N  is the number of data  

points. Moreover, it is often difficult to define a good distance metric, especially 

when dealing with complex data [156]. Similarity measures for complex data types, 

for example, biological sequences, are highly dependent on the data, require signifi-

approach based on the Naive Bayes assumption. The expectation-maximization al-

distance(x,  y) — I ^^(x* — y*)2

1/2
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cant amount of expert knowledge, and in some cases are very difficult to formulate.

Model-based clustering techniques, such as mixture models, have the advan­

tages that they do not require a distance metric. In addition, they are frequently 

more interpretable because the model for each cluster directly represents the cluster 

[156]. In the probabilistic context of density estimation, clustering can be viewed as 

“identifying the dense regions in the data source” [11]. The mixture model approach 

provides a useful and powerful framework for clustering data. The mixture model 

assumes that the data consist of some known or unknown number of component 

densities each of which corresponds to a cluster, or class [31, 87]. The probabilistic 

nature of the mixture models permits the use of different distributions that can han­

dle complex data types. The most widely used model-based clustering method is the 

one based on learning a mixture of Gaussian distributions [6, 39, 155]. An important 

advantage of mixture models is that they handle uncertainty about cluster mem­

bership in a probabilistic manner allowing clusters overlap [119]. Each data point 

belongs to each cluster with some probability. Moreover, model-based methods are 

more amenable to incorporating prior knowledge than discriminative methods.

Clustering aims to answer the fundamental questions such as what is the un­

derlying structure of the data, what clustering model best represents the data, and 

what is the “correct” number of clusters [107]. The problem of estimating mix­

ture densities can be viewed as a missing data problem where the labels for the 

component densities are missing [46]. Some iterative procedure, most often the EM 

algorithm [24], is used to estimate parameters of the distribution. The most suitable 

model and the number of clusters can de determined by using some kind of a cluster 

validation technique [59].

3.2 Formal framework for Naive Bayes assumption for mix­

ture models
We begin by assuming that the multivariate Bernoulli mixture model generates 

the data and each model component satisfies the Naive Bayes assumption.

Naive Bayes is a well-known probabilistic classifier based on the assumption of 

feature independence. It has earned its popularity because of its simplicity, efficiency
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and robustness. Particularly suited for the high dimensionality problems, the Naive 

Bayes performs surprisingly well compared to many more complicated classifiers that 

are not restricted by the independence assumption. The success of Naive Bayes can 

be explained by the fact that misclassification error or zero-one loss is a function 

of the sign and does not necessarily reflect the quality of the fit to a probability 

distribution [25]. Rish and others discovered that Naive Bayes achieves the best 

performance in two opposite cases: when the features are completely independent 

and when they are functionally dependent [104]. In an earlier work, it was shown 

that introducing attribute dependence does not necessarily improve the performance 

of Naive Bayes [25]. Naive Bayes uses Bayes’ theorem [23]:

T h eo rem . Let the events A \ , - - -  ,Ak form a parti t ion of  the space S  such that 

P( Aj )  >  0 for  j  =  1, • • • , k, and let B  be an event such that P ( B ) >  0. Then for  

i =  1, • • • , k:

,m  -P(A)P(BK) P(A )P(B |A ) , , , ,
■' 1 T t ^ P W P W A j ) '  { '

where P(Aj \B)  denotes the probability of event Aj given event B.

The events A are mutually exclusive, so formally we have:

P ( B )  =  ' £ P ( A \ B ) .  (3.2)
Aes

From the definition of conditional probability, we have:

P ( A , B )  =  P ( B \ A) ( P ( A ) .  (3.3)

Combining (3.2) and (3.3), we obtain (3.1), where P(B\Ai)  is a likelihood of B 

given Ai, P ( A ) is a prior probability, and P ( A l\B) is a posterior probability of A, 

conditioned on B.  Therefore, as we observe B,  the prior probability P (A ,) changes 

to posterior probability P(Ai\B)  [29].

Let A  be a set of variables, or observations, which we want to classify. Each 

variable is a D-dimensional vector: x  =  {aq, • • • ,Xd }- Let C  be a set of possible
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classes the variable can belong to: C  =  {ci, ■ ■ • , c*,}- Let’s use the Bayes’s rule to 

calculate the probability for each x  to belong to Cf

p ( e , w - p ( <v ) p^ ; ; ; ; ^ ) , j - { i , - , t } .  (3.4)

We assume the conditional independence of the features of each variable x; there­

fore, x  follows a multivariate distribution conditioned on class j:

D

P ( x i , - - -  , x D\cj) — P(x.\cj) =  j  — {1, - ■ ■ , k} .  (3.5)
i= 1

Using the Naive Bayes assumption, the posterior probability of a class conditioned 

on an observed data point is defined as

P f e lx )  =  j  =  { l (3.6)

In practice, the denominator is a constant and the same for all classes; therefore, 

we are only interested in the numerator of the fraction.

The Naive Bayes classifier assigns x  to a class with the highest P (c ,|x )  :

v n b  =  a r gmaxP ( c j )  TT P ( x t \cj). (3-7)
c;eC ie *

We normalize each P ( c j |x) in accordance with (3.4):

p ( c ix ) _  P ( cj ) Y l i = i P ( x i\cj )  /3 g\

We apply Laplacian smoothing to avoid zero probabilities [85].

3.3 EM algorithm for Bernoulli mixture model
EM is a class of iterative algorithms for maximum likelihood (ML) or max­

imum a posteriori estimation useful for a variety of problems with incomplete or 

missing data [24]. The EM algorithm is an effective technique for estimating the 

parameters of the multivariate mixture model. On each iteration of the algorithm,
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there are two steps - the expectation (E) step and the maximization (M) step. In 

the E-step, the expected values of the missing data given the observed data and 

the current parameter estimates are computed to maximize the objective function 

of the algorithm, the total log-likelihood. In the M-step, the expected values of the 

missing data computed in the E-step are used to re-estimate the parameters. The 

steps are repeated until the difference between subsequent estimates is small. EM 

terminates at a locally optimal solution.

Let X  =  {xi ,  • • • , xn}  be a collection of samples generated by a Bernoulli mix­

ture model. Bernoulli distribution is simple, with two possible outcomes, “success” 

and “failure” , that happen with probabilities p  and 1 — p, respectively. Therefore, 

each of the 43 spoligotype positions is a Bernoulli distribution described by the pa­

rameter p. The whole spoligotyping pattern is modeled as a multivariate Bernoulli 

distribution. The mixture of these distributions represents the spoligotyping data. 

Each data point Xi is a Z)-dimensional vector {xid, • • • , xto}-  Let’s assume that the 

number, initial guesses of the mixing weights, and parameters of mixture compo­

nents are known: 0  =  (jP (ci),--- ,P(ck) ,91 , - - -  , 9 k ) ,  where Qj =  { p j i , - - -  ,Pjo}-  

Each pjd is the probability of spacer d  being present given class Cj. The probability 

of spacer d  being absent, given class Cj, is 1 — pjd- In accordance with the Naive 

Bayes assumption of spacers’ independence, we have:

D

P{xi\cj) =  U m  -  Pid)l ~Xid• (3.9)
d=i

The log-likelihood function of parameters 0 ,  given data X ,  is defined as

n  k

L( Q\ X)  =  J > ^ P ( Cj) P ( ^ |Cj). (3.10)
i=1 j =1

According to the ML principle, a model best representing the data has parameters 

that maximize L(0|AT). Since the ML problem cannot be solved in a closed form, 

the EM algorithm must be adopted to optimize the likelihood function. The EM 

algorithm iteratively refines an initial model to better fit the data. To be able to use 

EM, we need to introduce a hidden (missing) random variable z that indicates which
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component generated each data point. This means that with each data point £j, we 

associate a vector variable zt =  {zn,  - ■ ■ , z ^ }  such that zi3 =  1 if x, was generated 

by the j-th  component and ztJ =  0 otherwise. The complete data log-likelihood 

function now can be expressed as follows:

n k

LC( Q\ X, Z)  =  EE ZijlogP(cj)P(xi \cj).  (3.11)
i= 1 j = 1

L c cannot be employed directly since z is unknown; therefore, according to the 

classical EM approach [87], we will work with the expectation of Lc, Q(Q,  ©'). This 

expectation serves as a lower bound on the observed data likelihood:

Q (0 ,0 ')  =  l og(P(X,  z|0))p(z|X , &) .  (3.12)
z

It was shown that the maximization of the function Q (0 , 0 ')  with respect to 0  is 

equivalent to maximizing the observing likelihood function in Eq. 3.10 [24]. There­

fore, introduction of the indicator variable z allows us to decouple the maximization 

problem into a set of simple maximizations. Substituting Eq. 3.10 into the definition 

of the Q function, we obtain:

n k

g e e ,© ')  =  (3 -13)
i=i j =i

The expected values of the hidden variables Zij are defined as

E lza\ =  zvP(z \X ’ 0 O =  ^  * =  { ! ’ ’ ' j  =  {!> ’ • ’ >k
V  22l=lP{ci)  P(Xi\Cl)

(3.14)

where 0 '  is the previous estimate of the parameters.

From Eq. 3.9, E[zq] is estimated in the E-step of EM as follows:

P i c j Y N l L i P j d i i - P j d ) 1 Xtd 

t i W n i i P S ' a - f t

The Q  function (Eq. 3.13) is maximized in the M-step of the EM algorithm with

^  p , v n V '  =  {1. ■" ," )  J  =  { ! ," •  ,*}■ (3.15)
E l - 1  p W  I L -1  f t j  (1 -  Pm)
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respect to parameters 0 ,  given the estimated in the E-step expected values of hidden 

variables E[zij]\

n  k

ax
e

© =  ar gmax  ^  ^^(E[zi j ] logP(cj )  +  E[zi j ] logP(xi\cj)) . (3.16)
i= 1 j =1

Each of the two terms on the right hand side can be optimized separately. To 

find the estimate for parameters P(cj) ,  we use the Lagrangian multiplier and the 

constraint X)j=i P ( cj) =  1> thus obtaining the expression:

Solving Eq. 3.17, we obtain:

P M  =  v F h ElZ£  , =  T : - 1nBlZ,’ ] , j  =  {1, ■ ■ ■■ . *}■ (3.18)
1 1 ^ [ zij \

To obtain the optimizing value for pjd, we use the following expression:

-  ̂ )  -  »■

To solve Eq. 3.19, we express it in a simpler form:

8 =°. (3-2°)
rjn “

from which we obtain the following:

V '' E[zij](xid Pjd) _  g 0̂ 21^
“  T jd (l-P jd )

Solution of the equation above gives us the estimate:

_ j= 1
E r = i^ [2o]

pjd =  (3-22)
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Algorithm 1 presents a concise summary of the EM algorithm for the multi­

variate Bernoulli mixture model.

A lg o r ith m  1: EM algorithm for multivariate Bernoulli mixture model.

1. Choose initial parameter settings ©' =  (P '(c i), • • • , P'{ck),0'11 • • • , 6'k}.
2. Repeat until convergence:

E-step:
*E\z --1 =  p' (ĉ  i =  s \  . . .  n \  j — (1 . . .

I *jJ Ef=1 P ' M n t i ’

M-step:
*P(Cj) =  j  =  {1, • • • , A:}.

=  % f f e r . J =  { i, • • - , Ar}, d =  { i, - • • , D}.
*Set © =  {P (c i) , • • • , P(cjt), 6»i, • • • , 0fe}-

The probability estimates for pjd can be smoothed using a Laplacian prior [85]:

V*  =  j  =  {1, ■ • ■ , *>, d  =  { 1 , . .  ■ , D} .  (3.23)
2^i=1 H zn\ +  2

Iterating between the E- and M-steps results in nondecreasing sequence of 

values for the total log-likelihood. We should avoid starting the EM algorithm  

from a “pathological” point, where Pjd parameters for all components of a mixture 

model are the same. If EM is initialized from a non-pathological stating point, the 

algorithm will always achieve a proper stationary point of the log-likelihood [16].

Initialization of the EM algorithm requires special attention, since the solution 

is highly dependent upon its starting points. The initialization includes choosing 

both the most appropriate parameter values and the number of components in the 

mixture model.

The next section discusses how to address the problem of assessing cluster 

quality in order to select the most appropriate model for the given data.

3.4 Cluster quality assurance
In general, assessing the clustering results and interpreting the clusters found 

are as important as generating the clusters [59]. Unifying model assessment pro­
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cedures have not been developed in the clustering area [75]. Cluster validation 

techniques can be based on an external criterion, which is some type of information 

not contained in the data set. The cluster quality can also be evaluated by some 

internal criteria that stem exclusively from the data [51, 107].

The least computationally demanding and the most practical model selection 

methods are based on maximizing the log-likelihood of the data. The log-likelihood 

increases with increasing the number of mixture components; therefore, penalizing 

criteria are used to account for model complexity. The most common of these are the 

information-theoretic criteria such as the Akaike Information Criterion (AIC) [2], 

Bayesian Information Criterion (BIC) [112], and the Minimum Description Length 

(MDL) [98, 105]. These criteria allow comparison of models with different parameter 

settings and/or different number of components [40]. However, it has been shown 

that the log-likelihood dominates the penalty terms in the AIC and MDL, therefore 

making them useless for selecting the number of components in the model [74]. The 

fully Bayesian approach treats the number of clusters as a random variable and cal­

culates a posterior distribution on this variable given the data and the model. This 

procedure is computationally cumbersome; even for the most widely used Gaussian 

mixture model, there is no closed form solution for the posterior [119].

Other methods include bootstrap [30] and cross-validation techniques, widely 

used in supervised learning. They have not been used much in clustering, perhaps 

because for many clustering techniques “there is no obvious score-function to cross- 

validate” [119]. This problem does not exist for probabilistic clustering because 

any score criterion that measures how well the model fits the data can be used for 

the model selection. Cross-validation consists of randomly dividing the data set 

into train and test set, fitting the model to the train partition and then testing  

it on the test set. Different cross-validation methodologies exist differing in how 

the partitions are chosen. The common procedures are the “v-fold” cross-validation 

and the “leave-one-out” cross-validation. Another specific cross-validation method  

is based on dividing the data set into M  partitions. Each of these partitions is 

treated as a test set, which is a /3 fraction of the data set, and the train set, which 

is a 1 — (3 fraction of the data set. This approach was termed “Monte Carlo cross­
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validation” (MCCV) [115]. The test and train sets do not have to be disjoint [118], 

but the most common approach is to make them non-overlapping.

Smyth (1996) investigated the use of cross-validated by MCCV approach log- 

likelihood in model selection, particularly in choosing the number of components 

in a mixture model [118]. His results showed that this procedure, with (3 =  0.5, 

performed better than the 10-fold cross-validation. The problem of selecting the 

number of clusters in the data is also called model order selection. There can be 

cases where the number of clusters is known, but in the majority of the situations 

we need to determine it from the data. Several methods have been proposed to 

find the most appropriate number of clusters in the data. For example, Tibshirani 

et al. (2001) proposed a method called “Gap statistics” , which uses the Euclidean 

distance measure [139].

The resampling-based approach requires no prior information and seeks to 

assess the cluster stability to find the most self-consistent data partitioning [107]. 

In this approach, the data set is iteratively split into two sets, both of which are 

used as train sets, and the disagreement between clustering solutions for these sets is 

computed [75]. The splitting process either picks the randomly selected data points 

or employs random parameters generated from the data [52],

The model initialization consists in selecting the starting parameters for an 

iterative procedure, which then refines the initial settings to fit the data. The 

EM algorithm, widely used for the estimation of the parameters for the mixture 

model, usually converges to a local maximum of the log-likelihood function. This 

hill-climbing procedure strongly depends on the starting points. The algorithm  

is usually restarted several times and the highest log-likelihood solution is used. 

Agglomerative hierarchical clustering [40], k-means clustering [52] and other tech­

niques may also be used to determine initial parameters. Useful in the context of 

this study, the analysis of the EM initialization techniques for estimating Bernoulli 

mixture models was recently performed [64]. In another recent work, the cluster 

initialization methods were divided into three major families, such as random sam­

pling, distance optimization methods, and density estimation methods [52].

A special group of methods which inherently test for cluster stability is cluster­
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ing ensembles. They go beyond what is achieved by a single clustering algorithm and 

are characterized by robustness, novelty, confidence estimation, and parallelization 

and scalability [142]. Various clustering algorithms produce multiple different data 

partitions, which are combined in a consensus partition that ideally should have a 

better quality than the given partitions [143]. The problem of combining multiple 

clusterings into a single solution has no less challenges than single clustering meth­

ods. The choice of the clustering algorithm(s), number of clusters in a consensus 

partition, and particularly an algorithm to deduce the partition, all constitute the 

challenges.

Co-association matrix as a means to summarize the results of multiple clus­

terings was suggested. The final clustering was determined using a voting fc-means 

algorithm [41]. In hypergraph methods, the clusters resulted from multiple cluster­

ings are represented as hyperedges on a graph, where each hyperedge describes a set 

of objects belonging to the same cluster. The final clustering is found using a k-way 

min-cut hypergraph partitioning problem [129]. Another approach is based on using 

generalized mutual information [141]. Among several other interesting methods, a 

probabilistic modeling of consensus partition can be mentioned [142]. This method, 

however, leaves us with the problem of determining the number of clusters in the 

consensus.

Ultimately, irrespective of the cluster validation technique that we use to de­

cide on the “best” model, we often still need to visually explore the results of several 

best-fitting models and, using as much domain knowledge as possible, select the most 

suitable one.
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CHAPTER 4 
SPOTCLUST

In this section, we present the results of the application of multivariate Bernoulli 

mixture models to the spoligotyping data obtained from the TB Control Center of 

the Public Health Research Institute, and from the Division of Infectious Diseases of 

the Wadsworth Center. SPOTCLUST (SPOligotyping data on Tuberculosis CLUS- 

Tering) is a first step in an ongoing project aimed at developing mathematical mod­

els for different genotyping and epidemiological data on TB and other infectious 

diseases.

4.1 Spoligotyping data
We applied the algorithm to 8011 spoligotype patterns obtained from MTC 

strains isolated between 1996 and 2004, primarily from New York State TB patients. 

Out of these patterns, 535, identified among 7166 MTC strains, each represented a 

shared type, i.e. observed in at least two specimens obtained from different patients, 

and 845 were unique isolates or orphans, each recovered from only one patient.

4.2 Probabilistic framework
The model-based approach is the most appropriate for spoligotype data clus­

tering, because the distance measure between spoligotypes has not been determined 

yet. Moreover, this approach allows us to incorporate the prior knowledge on the 

evolution of spoligotype patterns. The probabilistic framework that we adopted as­

sumes that a multivariate Bernoulli mixture model generates the data and that there 

is a one-to-one correspondence between mixture model components and spoligotype 

families [31]. Let X  be our database of n spoligotypes. The goal is to label each 

spoligotype. Each spoligotype is a binary 43-dimensional vector: x  =  {xi ,  • • ■ , x 43}. 

Let C  be a mixture model, which is a set of components: C  =  {ci, • • • , c*,}. Each 

mixture component Cj €  C  is defined by a set of parameters, which are the mixing 

weight of the component, P(cj),  and a 43-variable Bernoulli distribution, 6y  The

26
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mixing weights satisfy the constraints:

k

^ P ( C j )  =  1 and P(cj )  >  0. (4.1)
i = i

The probability of a spoligotype x  being generated by a model C  is

k

P (x ) =  P (cf ) P (x l° j ) -  (4 -2 )
3=1

Thus, to generate a spoligotype, first a mixture component is chosen with a proba­

bility P(cj ) ,  then its parameters are used to produce a binary spoligotype sequence. 

Let us denote each variable of spoligotype x* as x idl i =  {1, • • • ,n } . Each mixture 

component cj has 43 parameters pjd, where each pjd is a probability of a spacer 

being present and 1 — pjd is a probability of a spacer being absent at a position d  of 

a spoligotype. The probability of a spoligotype x , given component Cj is

43

p (x i|cj) =  " [ [ P j d i 1 ~Pj dY~Xid, j  =  {  1, • • • , k}.  (4.3)
d= 1

The parameters for finite mixture models are often estimated by the ML ap­

proach. The EM algorithm, described above, is the most commonly used algorithm  

for finding a local maximum of the observed data likelihood function.

4.3 Multivariate Bernoulli model with Hidden Parent
A widely accepted hypothesis states that spoligotypes evolve by the deletion 

of a single or multiple contiguous spacers and that the spacer duplication is a very 

rare event [3, 32, 148, 154]. To accurately model spoligotypes, the multivariate 

Bernoulli model was modified to incorporate this knowledge in the form of a ” Hidden 

Parent”. Given a 43-dimensional spoligotype x , and a spacer position d, if xld =  1 

(spacer present), then the distribution cj generating Xj should have the probability

Pjd very high. In other words, we have assumed that each spoligotype family has an

unobserved Hidden Parent and that the children of the Parent, the observed strains 

in this family, may lose a spacer with some small probability, but are extremely
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unlikely to gain one. If we observe xid — 0 in the spoligotype, then its Hidden 

Parent should be generating a 0 with high probability and a 1 with some non- 

negligible probability (the child can lose a spacer) at position d.

Given the i th spoligotype and the dth spacer position, we introduce the follow­

ing notations: m n  =  P ( x id =  l \Hd =  1), m00 =  P ( x id =  0 |H d =  0), m w =  P ( x id =  

l \ Hd — 0), and m 0i =  P ( x id =  0\Hd =  1), where Hd is the (1th spacer in the Hidden 

Parent. It is obvious that moi =  1 — m u and moo =  1 — mio; therefore, we can work 

with only two parameters, m n  and m i0. Since no prior knowledge exists on the 

probabilities with which the child spoligotype loses spacers from its parent spolig­

otyping pattern, we assume that these parameters are the same for each mixture 

component and each spacer position. We assume that the probabilities of the child 

gaining and losing spacers from the parent’s pattern are 1CT7 and 10-1 , respectively; 

therefore, m u  =  0.9 and mio =  10~7.

Equation 4.3, defining the probability of spoligotype x* given mixture compo­

nent Cj, becomes:

43

P(xi\cj)  =  JJ(pjdm n +  ( l —pjd)mio)Xid( ( l —P jd)(l—m io)+Pjd(l —m n ))1_Xi<i. (4.4)
d= 1

The log-likelihood function of © given the data X  is now defined in the fol­

lowing form:

L(0|X) =

n k 43

log ^ 2  p (°j) I I (Pjdm n +  (1 - P j d ) m w )Xid(.(l ~Pjd){ l  - m 10) + p jd( 1 -  m n ))1_Xw.
i= 1 j=1 d= 1

(4.5)

Since we use the EM algorithm to estimate the parameters p]d, we introduce, 

as described before, a missing random variable z that indicates which component of 

the mixture model generated each data point. E[zij] is now defined as

P ( cj)' Hf=i (Pjdmu  +  (1 -  Pjd)mi0)Xid(( l  -  pjd) { l  -  m w ) + p jd( l  -  m n )) 1̂

Y , L i P (ciyi lf=i(.Pidrnu +  (I ~  Pid)m10)x^{ ( l  -  Pid) { l  -  m 10) + p ld{ l  -  m n ))1"** ’
(4.6)

where i =  {!,-■■ , n } , j  =  { I , -  - ■ , k} .

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



29

Analogously to the Eq. 3.19, the expression for the optimizing value for pjd is 

defined as

g  n  k  43£:EE E[zij\ l o g ^ { p j dm l l + { l - p j d ) m w )Xid{ { l - p j d) ( l - m w ) +p j d { l - m n ))1 Xid,
Wd i= i j =i d=i

(4.7)

which can be expressed in a simpler form:

q  n  k  43

sEEEE
i=i j =i d=i

(4.8)

Taking the derivative of the Eq. 4.8 and setting the result to zero yield the 

following:

y '  fffcj](ran  -  m io)(m i0 -  xi d + p jd( mn  -  m w )) _
^ { m n P j d  +  m i o ( l - p jd) ) ( mw - l + p jd( mu - m w ))

Solving this equation, we obtain:

-  £ % ] ( % , - % )  ‘ (4'10)

The optimizing values for mixing weights of model components are obtained 

in the same way as described above (see Eq. 3.17 and Eq. 3.18).

Algorithm 2 outlines EM for the multivariate Bernoulli mixture model with  

Hidden Parent.

We will discuss shortly that we have analyzed mostly the shared types, i.e. 

identical spoligotypes characterizing isolates obtained from two or more patients. 

The number of occurrences of each spoligotype pattern was important for the clus­

tering task. However, repeatedly processing identical data points among the total of 

more than 7000 spoligotypes is redundant and significantly slows the EM algorithm. 

We improved this by exploiting each shared type only once and accounting for the 

number of times it is found in the database. If we let n  be a total number of distinct 

shared types and denote as U the number of occurrences of the shared type i, then
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A lg o r ith m  2: EM algorithm for multivariate Bernoulli mixture model with Hidden 
Parent.

1. Choose initial parameter setting 0 '  =  (P '(c i), • • • , P'(ck), 0[, ■ ■ • , 9k}.
2. Repeat until convergence:

E-step:

M-step:
*P(Cj)  =  ^ i= ing N ) ; j  — ;

* * r  =  3 =  {1, • • • . *} , d =  { 1 , . . .  ,43}.
*Sete  =  {P(Cl), 01,. •■,<)*}.

at the M-step of EM, we calculate mixture component weights as follows:

, F (C.) =  J =  ,* } ,  (4.11)

where N  is the total number of the data points.

The log-likelihood function of © is expressed in the following form:

n k

L( 6 |X ) =  ^ ( l o 9 ^ P ( c i )P (x , |C)))(„ (4.12)
i =  1 j = 1

In the text below, for simplicity of representation, we omit the fact that the shared 

types from the New York State database were each used once in the EM algorithm.

4.4 Model initialization and validation
The performance of the method is highly dependent on the initialization (seed­

ing) of EM, which includes choosing the number of components in a mixture model 

and their parameters. To incorporate expert knowledge, we used the prototypes 

derived from SpolDB3. Figure 4.1 shows these prototypes as well as expert defined 

visual recognition rules [35]. We extracted seeds for 32 mixture components. The 

prototypes for the M. africanum  and M. tuberculosis subfamily CAS were combined 

into seeds for two corresponding components; and the prototype for M. canetti was
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excluded from the analysis. Based on visual inspection, we supplemented these 

seeds with four additional prototypes for spoligotypes that did not match any of the 

SpolDB3-based prototypes.

In another model, EM was initialized randomly. We employed Monte Carlo 

cross-validation (MCCV) approach [118] to find k, the number of components in 

the mixture. MCCV divides the data M  times randomly into disjoint test and train 

partitions. Smyth (1996) samples his data set with replacement [118], but the most 

accepted opinion states that common points in test and train sets can potentially 

increase the stability artificially [75]. The test subset is fraction (3 of the data set. 

For each of the M  partitions, we vary k from kmin to kmax. EM is initialized using 

the fc-means algorithm, which is itself initialized randomly. Figure 4.2 outlines the 

MCCV approach. EM is randomly restarted 10 times and the highest log-likelihood 

solution is used as a trained model. The random initialization is schematically 

depicted in Fig. 4.3.

EM iterates until the total log-likelihood change is less then 10-7 or until the 

change of component weights’ sum is less than 5 x 10~8. Alternatively, it stops when 

the number of iterations reaches 30. For the highest-total-log-likelihood model, the 

EM algorithm iterates 300 additional times or until convergence. Before starting 

the 300 iterations, each prototype pjd is modified by adding randomness component 

to it [64]:

Pjd =  up%nd +  (! -  at)(pjd), (4.13)

where a,  p ^ nd €  (0 ,1) and a  measures the “global randomness” of pjd-

Each trained k-order model is applied to the test set, and the test data log- 

likelihood is calculated. The procedure is repeated M  tim es and the average (cross­

validated) test data log-likelihood, L f ,  is calculated for each k. It has been shown 

that Lck is “an approximately unbiased estimator” of the expected value of the 

Kullback-Leibler (KL) distance [71, 72] between the real and the estimated data- 

generating probability distribution [118]. The KL distance, or divergence, also called 

relative entropy, between the “true” discrete distribution having probability function 

pk and an estimated, or “target”, discrete distribution having probability function
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Figure 4.1: Excerpt from SpolDB3 database showing phototypes, visual recognition rules, 
and binary and octal description [35]
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Figure 4.2: Schema of the MCCV approach used to find the optimal number of clusters 

qk is defined by:

D(pk, qk) =  5 ZP k l° 9 — •
k qk

For continuous distributions, the summation is replaced by the integral. This is not 

a true metric, since the distance is not symmetric: D(pk,qk) =/=■ D(qk,Pk)- Never­

theless, it possesses some useful properties and is widely used in information theory 

and probability theory as a natural measure of distance from a true distribution to  

some other arbitrary distribution. Computation of the KL divergence for Gaussian 

mixture model is not direct [92], The same applies to the multivariate Bernoulli 

mixture model.

The plot of L f  as a function of k shows what k is the most probable for the 

given data. Our algorithm was run with M  =  100, fi =  0.3, a  =  0.7, and k varying 

from 30 to 60.

After we had decided on a particular k, we generated, as previously described 

(see Fig. 4.3), 100 randomly initialized mixture models and calculated the total 

stabilities (over the resulting families) for each of them relative to the other 99 

models. We chose a final mixture model based on the total stability, or average 

best match [55], and the total log-likelihood (see Fig. 4.4). We call the stability
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Randomly initialized 
prototypes

Select the highest 
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Figure 4.3: Schema of the random initialization of the EM algorithm

100 times

SpolDB3 model

EM

Stability

100 Randomly initialized 
models

SpolDB3 prototypes + 4 added 

k = 36

Randomly initialized model 

k = 36

Figure 4.4: Schema of the approach used to find the probabilistically best model

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



35

of a spoligotype cluster, or family, the average best match between this cluster and 

clusters identified using other models. If we define two clusters C  and C'  and treat 

them as sets, the match (between 0 and 1) will be defined as [55]:

m atch(C , C') =  m in( \ c n c \  i c n ^ i
\c\  ’ H

) • (4.14)

High match values mean that the sets have many spoligotypes in common and are 

roughly of the same size [55]. Figure 4.5 graphically explains how the best match 

values were calculated. For each cluster in each model, we calculate the best match 

with respect to all other models. After that, we average these best match values 

over all of the clusters in a particular model with respect to the rest of the models, 

thus obtaining the stability of the model. To calculate the stability of a cluster we 

average the cluster’s best match values over all of the generated models.

Best matches 
Modell with Model2Model2Model2 ModeMModell

.0.5

Best match for •  = 0.5Best match for

0.5

0.33

0.4

Figure 4.5: Explanation of calculation of best math values

The stabilities of the families produced by a model initialized with the SpolDB3- 

based prototypes were assessed by comparing the 36 identified families with the 

families identified by the 100 36-order randomly initialized models, which is shown 

in Fig. 4.6. These models were initialized as schematically shown in Fig. 4.3.
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Figure 4.6: Schema of the analysis of the clusters identified by the SpolDB3-initialized 
model

4.5 Results
4.5.1 Families identified using SpolDB3-based m odel

At first, we applied the Bernoulli mixture model initialized with the 32 SpolDB3- 

derived prototypes to the data set including 845 unique and 535 shared patterns. 

Some of the resulting families did not reflect the current view on spoligotypes’ evo­

lution, i.e. their members had spacers in the positions where the prototype for this 

family did not have spacers and therefore could not be an ancestor of these strains.

Figure 4.7 shows a SpolDB3-based prototype and a sequence logo for one such 

family where the spacers were “acquired” by the children of the family’s prototype: 

some of the spoligotypes in the family had spacers at positions 1-3 and 26-31, at 

the same time as their parent spoligotype did not. Sequence logos are a common 

graphical representation of an amino acid or nucleic acid multiple sequence alignment 

[20, 111]. They illustrate the location and degree of sequence conservation in the 

set of aligned sequences. Sequence logo analysis was previously carried out on 

spoligotyping data and was found to be useful in representing selected groups of 

spoligotypes and examining phylogenetic relationships of the MTC strains [26].

Some of the spoligotype patterns in the analyzed database did not correspond 

to any of the SpolDB3-defined prototypes; therefore, these previously empirically 

defined prototypes were supplemented with four additional prototypes. The or­

phan (unique) spoligotype patterns were excluded from further analysis, since their
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Bernoulli Mixture Model

Figure 4.7: Prototype and sequence logo for the M. tuberculosis Haarlem2 family identified 
from the whole data set using Bernoulli mixture model; S indicates spacer, N 
indicates absence of spacer

validity may be questionable.

The EM algorithm was modified by introducing the Hidden Parent into the 

Bernoulli mixture model, which resulted, when EM was started with the same initial 

parameters, in families that were more consistent with the biologically relevant def­

inition of a spoligotype family being a collection of children of a Hidden Parent (see 

Fig. 4.8). We adopted the Hidden Parent model for all of our further experiments 

presented here.

Bernoulli Mixture Model without Hidden Parent

Bernoulli Mixture Model with Hidden Parent

f i l l<r u> <o to a  v m r '

Figure 4.8: Difference in the content of M. tuberculosis Haarlem2 family identified with 
and without Hidden Parent; S indicates spacer, N indicates absence of spacer
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Figure 4.9 describes the families identified using the SpolDB3-defined proto­

types plus four prototypes added in this study for initialization. The first column 

contains the names for spoligotype families as defined in [35], as well as families 

33 — 36, resulting from the 4 additional prototypes. The second column shows the 

total number of isolates, each corresponding to a TB patient, in the family. The third 

column contains the stability value for each family, and the fourth is a schematic 

representation of probabilities of the 43 spacers in spoligotypes within the family, 

i.e. the Hidden Parent of the family. The colorbar underneath the table shows the 

gradation of colors corresponding to probabilities of spacers.

Each among the 533 isolates was assigned to one or another among the 36 

possible families with probability greater than 0.5. Spoligotypes describing two 

remaining shared types, with octal codes designations [22] 776377777720771 and 

776377777420771 each belonged with approximately equal (0.44) probability to fam­

ilies Haarlem3 and S, and with probability 0.12 to family T l. It is worth noting 

that the M. bovis-BCG family contains mostly isolates of M. bovis strains. The 

canonical M. bovis-BCG spoligotype has octal code 676773777777600, and the New 

York State database contains 41 isolates with this spoligotype out of the total of 

109 isolates in the M. bovis-BCG family. We keep the M. bovis-BCG name for this 

family to be consistent with the SpolDB3 notation.

We also report the stability values for each of the 36 families relative to the 100 

randomly initialized models each having 36 components. When compared to these 

100 clustering solutions, 23 families of the SpolDB3 clustering had stability values 

higher than 0.5, five families, Haarlem3, H37Rv, T2, XI and LAM7, had stabilities 

between 0.4 and 0.5, and the rest (EAI1, EAI4, S, LAM1, LAM2, LAM5, LAM6 

and M. m icroti) were not stable, with stability values below 0.4. Interestingly, the 

stabilities of defined in this work families 33 and 34 (temporarily numbered so for 

convenience purposes) were quite high. Family33 included a shared type of size 22 

wherein only two spacers, 33 and 34, were absent. This type was recently described 

as belonging to a clade MANU [117]. Family 33 gathers spoligotypes with most of 

the spacers present; this spoligotyping pattern is the closest to that of a putative 

common ancestor.
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Family Total (n) Stability Description

EAI3 112 0.96

LAM3 138 0.95

Haarieml 236 0.94

Beijing 985 0.92

X2 364 0.88

CAS 283 0.87

LAM4 146 0.84

T4 67 0.83

X3 469 0.81

EAI5 171 0.80

M . bovis BCG 109 0.78

Family34 60 0.76

Family33 119 0.75

EAI2 153 0.73

M . africartum 60 0.71

Family36 46 0.68

T3 56 0.67

LAM9 534 0.67

LAMS 58 0.63

Family35 31 0.59

Haar1em2 74 0.58

T1 1084 0.58

LAM 10 73 0.57

Haarlem3 603 0.50

H37Rv 122 0.49

T2 57 0.45

X1 395 0.41

LAM7 55 0.40

EAI1 22 0.40

EAI4 70 0.34

S 134 0.27

LAM1 142 0.24

LAM2 94 0.16

LAM5 43 0.15

M . microti 3 0.08

LAM6 2 0.02

r m * i — !~r*rvn »

■■CQ2CB
m w acccm

Figure 4.9: Summary of the results obtained using the SpolDB3-derived prototypes for 
model initialization. Probability of a spacer in Hidden Parent is represented 
by colored box where gradation of colors corresponds to probabilities of the 
spacer’s presence: white indicates 0 and black indicates 1
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Results of a recent work on identification of MTC isolates by chromosomal 

deletion analysis confirmed the identity of 12 M. africanum  strains each having dis­

tinct spoligotype [99],[Parsons, personal communication]. Seven of these 12 spolig- 

otypes were in our training database and six of the seven were correctly identified 

using the SpolDB3-based model as M. africanum. The seventh was placed in family 

35 because it has very unusual for the M. africanum  family spoligotyping pattern, 

with spacers 10-37 absent. Five strains were absent from our database and therefore 

could not be used to train the SpolDB3-based model. Of the five, when submitted 

to SPOTCLUST, three were correctly identified as M. africanum, and two were as­

signed to families T2 and 33, again because their spoligotypes were very different 

from the SpolDB3-derived definition of family M. africanum. Under the assump­

tion of the SPOTCLUST and SpolDB3 expert rules, M. africanum  strains belong 

to more than one spoligotyping family.

4.5.2 Families identified using randomly initialized m odel (RIM)

For the RIM, we needed to determine the number of mixture components, or 

the model order. Figure 4.11 demonstrates the results of the application of MCCV 

to our spoligotyping data. The average test log-likelihood over 100 different cross- 

validation partitions are plotted against the model orders. We have chosen 48 to 

be the optimal model order, since this point corresponds to a peak in the average 

test log-likelihoods. Moreover, after this point the curve levels off. This indicates 

that a further increase in the number of parameters will not significantly improve 

the log-likelihood [131, 139].

The 48 families identified by the RIM, sorted by their stability values, are 

summarized in Fig. 4.10. We observed that on average the total log-likelihood of a 

model increases with the stability of the model. Therefore, out of the 100 randomly 

initialized 48-order mixture models, we chose as a final solution the one that, when 

fitted to the data, allowed EM to converge within 300 iterations and achieve the 

highest total log-likelihood. Simultaneously, this model was characterized by the 

highest stability. The first column in this figure contains the spoligotype family 

labels given to them by the model initialized with the SpolDB3-derived prototypes
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Family Total (n) Stability Description

1: EAI3 112 0.99

3: Beijing 968 0.97

7: M . bovis BCG 63 0.91
8. CAS 
9: T1.X3 17 0.84

12: M . bovis B C G  

13: Family33, T1
46 0.82

15: CAS 
16: T4, H37Rv 
17: M .africanum

47
75
23

0.80
0.79
0.79

20: X3 452 0.76

22: Family34, EAI1 66 0.75
0.71

25: Haariem2. LAM7 
26: EAI1

77
3

0.68
0.67

nfi*
'

32: Family36, T3 50 0.57
55

0.55

36: LAM4
37: Family35, LAM7

17
9

0.50
0.47

122 0 3 9

41: EAI2
14

7
0 39 
0.39

43: LAM7 12 0.35

4?J n-w
*

48: T1 31 0.10

*19: LAM1, LAM2, LAM6, LAM9; 24: Haariem3, X1, H37Rv, T1, T2; 27: EAI1, LAM8, LAMS); 29: LAM7, Family35, LAMB,
EAI1; 34: Haariem3, Haariem3+S; 40: T3, M. africanum, Family36; 42: H37Rv,T1,EAI5,Family33— ^ M , . |

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Figure 4.10: Summary of the results obtained using RIM. Probability of a spacer in Hidden 
Parent is represented by colored box where gradation of colors corresponds to 
probabilities of the spacer’s presence: white indicates 0 and black indicates 1
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Figure 4.11: MCCV results: Cross-validated test log-likelihoods versus number of clusters 
for k =  30, • • ■ , 60

and the prototypes for families 33-36. The 48 families are numbered for convenience; 

we will refer to them as the N families.

Of the 48 families, 35 have average stability values greater than 0.5. Another 

13, while they are not stable, with stabilities between 0.1 and 0.5, nevertheless occur 

in the same content in several other high-stability and high-log-likelihood models.

Most of the highly stable families identified by the RIM corresponded to the 

highest-stability families produced from the SpolDB3 prototypes: EAI3, LAM3, 

Beijing (included Mycobacterium m icroti), Haarleml, LAM4, X2, X3, EAI2 and 

LAM10.

Some of the families split into two: the M. africanum  spoligotypes formed 

two distinct families corresponded to the SpolDB3 prototypes for classes Afril and 

Afri2—3, respectively (see families N18 and N17 in Fig. 4.10). The CAS spoligotypes 

also split into two stable families N8 and N15 matching the SpolB3 prototypes for 

CAS1 and CAS2. Spoligotypes previously placed in families 33 and 34 formed two 

stable families N13 and N22, respectively, each having the content almost identical 

to that of their corresponding counterparts resulting from the use of the SpolDB3- 

based seeds.
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Several SpolDB3-derived families merged. The largest of them was the 0.71- 

stability value family comprising spoligotypes labeled as belonging to families T l, 

Haarlem3, X I, and H37Rv (family N24 in Fig. 4.10). Similarly, members of several 

LAM families aggregated into one family with stability value 0.77 (family N19). 

Spoligotypes labeled as belonging to the EAI4 family, and some EAI5 spoligotypes, 

also formed one stable family. Family S was reproduced nicely by RIM, but with 

a low stability. Haarlem3-labeled spoligotypes formed a separate family only if the 

spacers 29-31 and 33-36 were absent simultaneously. Several medium- and low- 

stability clusters, which we could only tentatively call families, contained a few 

shared types or only a single one.

4.6 Discussion
4.6.1 SpolDB3-initialized model

The initial mixture components derived from the international spoligotyping 

database SpolDB3 were based on the visual inspection of the spoligotype profiles by 

a human expert [113]; therefore, they fitted the structure of the data well. The algo­

rithm was forced to identify manually defined MTC strain families. To evaluate the 

bias in the identification of these families, we randomly initialized 100 36-component 

models and compared the resulting families with each of the SpolDB3-based fami­

lies. Out of the 36 SpolDB3-based families, 15 had stability greater than 0.7 (see 

Fig. 4.9).

A SpolDB3-defined family was reported as stable if it was reproduced in the 

identical content by the majority of the 100 36-component RIMs. In other words, 

the stability value for a family represents the frequency with which our algorithm  

finds this family given that it has initially no knowledge about the existent families 

except their total number, 36. The stability is of importance to us because we try to 

minimize the human input into the spoligotyping data analysis and this value helps 

us to assess our efforts. High stability value of a SpolDB3-based family means that 

the family is well reproducible by our algorithm; low manifests that the algorithm  

is unable to consistently identify the family. Low stability indicates that either the 

family is not well defined or the model needs to be improved. Both of these factors
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may influence the results as well. We observed that SPOTCLUST does quite a good 

job of finding expert-defined families, not without some exceptions, however, which 

we will discuss shortly.

Use of the Bernoulli mixture model with Hidden Parent as opposed to the 

model without Hidden Parent resulted in biologically more correct families, because 

the child spoligotype was allowed to have some spacers lost but not gained, reflecting 

currently widely accepted hypothesis on evolution of the DR locus. In fact, with the 

exception of a few shared types, the spoligotypes in the 36 families were legitimate 

children of their expert-defined prototypes. In family LAM8, three spoligotypes had 

spacer 21 revealed. However, the rest of their pattern matched that of their parent. 

Because there was no other, more suitable, parent for these spoligotypes, they were 

forced to join this family.

In general, SPOTCLUST includes each spoligotype in the closest family, com­

plying with the hypothesis of losing spacers by the DR locus as it evolves. Upon 

including new spoligotypes in a family, SPOTCLUST changes the parameters of 

the family’s Hidden Parent to accommodate for the existence of the new members, 

thus predicting a new, legitimate to all of the family members, Hidden Parent. 

The Hidden Parent is not a spoligotype, but a probabilistic entity. Most of the 

SpolDB3-based families contain a spoligotype that could be considered ancestral to 

the rest of the members. For example, in family LAM10, the pattern with octal code 

777777743760771 is parental to other spoligotypes that only miss spacers compared 

to their parent. Some families have a hypothetical parent only.

SPOTCLUST, with random initialization, did not identify several of the SpolDB3- 

based families as distinct ones. Some SpolDB3-based families had low stabilities. 

Since some of the SpolDB3-derived prototypes were children or parents of other 

prototypes, the randomly initialized EM did not always distinguish these families. 

Families such as X I, H37Rv, S, EAI2, T2 and Haarlem3, had low, less than 0.5, 

stability values relative to the randomly initialized 36-order models. Even when the 

EM algorithm was randomly initialized with a 100-component model, these families 

merged into a single family whose Hidden Parent would be a spoligotype exactly 

matching the prototype for family T1 (data not shown). In general, the higher the
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number of the components in the model, the harder EM tries to divide large fam­

ilies into smaller ones; therefore, the fact that the families were not separated in a 

100-component model serves as an indication that according to our method these 

families comprised one big family.

Most of the spoligotypes in the T families had many spacers missing respective 

to their initial parents, the SpolDB3-derived prototypes. Some of the spoligotypes 

included in family T 1 matched the prototype for family T2, a not surprising result, 

since the prototype for T2 is the child of that for T1 (see Fig. 4.1). The T family 

is currently considered “ill-defined” [28]. We were unable to create models that 

discriminated well among its members; therefore, our conclusions concurred with 

referring to this family as poorly defined.

Our results suggested that some of the SpolDB3-based prototypes were re­

dundant and should be restated for use in the context of our approach, perhaps 

in a hierarchical fashion. When 36-order models were randomly initialized to iden­

tify strain families, spoligotypes from all LAM families, except LAM3 and LAM4, 

merged into one family composed of children of LAM9 (see Fig. 4.1 for prototypes 

for these families). The LAM3 family was very stable, probably because there were 

enough almost identical shared types to form this distinct set. The M. m icroti family 

contained only one shared type wherein all spacers, except 37 and 38, were absent. 

This family had a very low stability, since in the randomly initialized 36-order model 

the M. microti shared type was always included in the Beijing family. Spoligotypes 

that have been allocated to families EAI1 and EAI2 by the SpolDB3-derived model 

were mixed with spoligotypes from other families (33, 34, and sometimes LAM8) 

when the model was initialized randomly; therefore, the stabilities of EAI1 and EAI2 

were low.

We can conclude the discussion with the suggestion that further analysis is 

needed to determine what exactly constitutes a spoligotyping family. Our results 

confirm most of the families previously distinguished within the SpolDB3 database 

and indicate which families require special attention.
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4.6.2 RIM

Finding the “optimal” number of different groups in the data, without any 

prior information, presents a rather challenging, sometimes unrealistic, problem. 

The solution is highly dependent on the algorithm used, the model initialization, 

the data characteristics, and the definition of the “optimality” itself [118]. Using the 

MCCV approach to determine the number of distinct families in our spoligotyping 

data, we have concluded that 48 represented a reasonably good number of compo­

nents in the model (Fig. 4.11). The highest total log-likelihood and total stability 

were criteria for validation of our algorithm. We consider the final model to be 

the one with parameters best fitting our data. It should be noted, however, that 

because our method employs probabilistic models, the correct number of mixture 

components and their parameters do not exist as single numbers, but instead each 

vary within a certain range. We do not claim that there are exactly 48 spoligotyp­

ing families; we show only that in the context of our model definition this number 

reflects well the structure of the data. The solution that we report here should be 

considered as probabilistically good, given our choice of method.

The majority of the stable families identified by the SpolDB3-based model 

were also identified by the RIM. Some of the SpolDB3-defined families merged into 

one family (see, for example, families N19, N24, N27, N40, and N42 identified by 

the RIM) and thus could be considered to have potentially independently evolved 

from the same ancestral strain. This is the same conclusion that we had made upon 

analysis of the SpolDB3-based families and their stability. Our conclusions again 

concurred with the previous reporting of T  family as poorly defined [28]. Taken 

together, this indicates that, if we are to preserve the SpolDB3 recognition rules, 

the Hidden Parent model may need to be refined, possibly by introduction of a 

hierarchy concept into the model, or by separately identifying subfamilies within 

certain big families. Some novel families, such as families N9, N13, N14, N16, N19, 

N22, N23 and N24, each characterized by a newly defined Hidden Parent, were 

stable. Appearance of small families may be due to the current lack of genotyped 

MTC strains, even though most of the samples in our collection were from NYC, 

whose TB patient population is one of the most diverse in the United States.
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We can conclude that the RIM distinguishes the major spoligotyping families 

well, while suggesting some new families whose validity needs to be further examined.

The fact that some of the families identified by SPOTCLUST are not stable, 

suggests room for further refinement of the model. One possible improvement of 

our algorithm is the incorporation of interdependencies of spacers. Results of previ­

ous work suggested that the deletion of contiguous DVR sequences does not occur 

sequentially, but rather by a single loss of several adjacent DVRs [3, 154], This 

severely complicates the use of spoligotypes for the derivation of MTC phylogeny 

[154]. There is evidence that a canonical Beijing spoligotype appeared as a result 

of one event that was a simultaneous loss of 34 contiguous DVRs from an ancestral 

spoligotype initially having all of the 43 DVRs present (N. Kurepina, personal com­

munication). Also, some spacers (for example, 33-36) are simultaneously absent in 

most spoligotypes, a feature which may indicate their interaction. Another compli­

cation arises if some spacers were lost independently in distinct families resulting in 

convergent spoligotypes. Moreover, certain spacers may be present but undetected 

by spoligotyping due to particular IS 6110 insertions [91]. We should therefore con­

sider these factors when inferring the parent-child relationships of spoligotypes.
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CHAPTER 5 
Analysis of demographic data on patient isolates 

in MTC strain families

This chapter is dedicated to the assessment of possible advantages associated with 

identifying of the MTC strain families based on spoligotyping data. We examined 

the available patient data accompanying each data point within the MTC strain 

families.

5.1 Methodology and available data
Our ultimate goal of designing a decision-making tool for TB control purposes 

required fusing information from TB strain genotyping and demographic patient 

data. Here we showed how analyzing patient data by the identified spoligotype 

families can yield valuable insights into underlying disease trends. We analyzed 

the NYC spoligotyping database that comprised isolates collected from January 1, 

2001 to July 1, 2004. It included 220 shared types for 2297 isolates and 389 unique 

spoligopatterns. Each of the isolates was annotated with patient’s age, gender and 

country of birth; for each foreign-born patient, the date of his/her entry to the 

United States (US) was available. The NYC database contained information for 

patients from 112 countries; we grouped the countries other than the US into eight 

geographic regions as follows. Central America: Belize (n =  3), Guatemala (n =  

8), El Salvador (n =  13), Honduras (n =  24), Mexico (n — 123), Nicaragua (n =  

2), Panama (includes Canal Zone) (n =  6); South America: Argentina (n =  5), 

Bolivia (n =  4), Brazil (n =  11), Chile (n =  1), Columbia (n =  30), Ecuador (n =  

184), Guyana (n =  48), Peru (n =  53), Uruguay (n =  1), Venezuela (n =  1); the 

Caribbean: Aruba (n =  1), Bahamas (n =  1), Barbados (n =  1), Cayman Islands (n 

=  1), Cuba (n =  13), Dominica (n =  1), Dominican Republic (n =  126), Grenada 

(n =  2), Jamaica (n =  15), Puerto Rico (n =  75), St. Kitts and Nevis (n =  1), 

St. Lucia (n =  1), St. Vincent and the Grenadines (n =  2), Trinidad and Tobago 

(n =  21), U.S. Virgin Islands (n =  3), Haiti (n =  112); Europe: Albania (n =  5),

48
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Austria (n =  3), Belarus (n =  1), Estonia (n =  1), Finland (n — 1), Germany (n 

=  2), Greece (n =  1), Hungary (n =  1), Ireland (n =  2), Italy (n =  4), Lithuania 

(n =  1), Macedonia (n =  2), Poland (n =  9), Portugal (n =  3), Romania (n =  7), 

Russia (n =  19), Spain (n =  3), Turkey (n =  6), Ukraine (n =  11), Yugoslavia (n 

=  8); Africa: Angola (n =  2), Burkina (n =  1), Cameroon (n =  4), Central African 

Republic (n =  1), Chad (n =  1), Egypt (n =  5), Ethiopia (n =  7), Gambia (n =  11), 

Ghana (n =  15), Guinea (n =  22, Ivory Coast (n =  13), Kenya (n =  1), Liberia (n 

=  10), Malawi (n =  1), Mali (n =  19), Mauritania (n =  2), Morocco (n =  3), Niger 

(n =  3), Nigeria (n =  18), Senegal (n =  15), Sierra Leone (n =  6), Somalia (n =  1), 

South Africa (n =  5), Sudan (n =  1), Tanzania (n =  2), Togo (n =  6), Tunisia (n =  

1), Zambia (n =  8), Zimbabwe (n =  2); Central Asia and Middle East: Afghanistan 

(n =  3), Armenia (n =  1), Bangladesh (n =  31), Bhutan (n =  1), Georgia (n =  2), 

India (n =  117), Kazakhstan (n =  1), Nepal (n =  37), Pakistan (n =  53), Saudi 

Arabia (n =  2), Sri Lanka (n =  1), Turkmenistan (n =  1), Yemen (n =  7); Far East: 

Cambodia (n =  5), China (n =  259), Hong Kong (n =  21), Indonesia (n =  15), 

Japan (n =  5), Macau (n =  2), Malaysia (n =  3), Mongolia (n =  1), Myanmar (n 

=  12), North Korea (n =  3), Philippines (n — 65), South Korea (n =  70), Taiwan 

(n =  6), Thailand (n — 6), Vietnam (n =  26). The database also contained three 

Canadian-born patients that were considered separately. A total of 758 isolates were 

obtained from US-born patients.

We applied both the SpolDB3-based and randomly initialized models trained 

on the New York State database to the smaller NYC database, which was, with the 

exception of 247 orphans and seven shared types, a subset of the former. Orphan 

spoligotypes were excluded from the analysis when the models were trained on the 

New York State database. However, to test the models, it was appropriate to include 

orphans (unique spoligopatterns), because one of our goals was to be able to make 

inferences about orphan spoligotypes given knowledge acquired from studying shared 

types. Out of 389 orphans in the NYC database, 126 were present at least twice 

in the New York State database, thus being shared types in the latter. The model 

trained on the larger database was fixed, i.e. its parameters were considered final. 

Each spoligopattern in the NYC database was then assigned to its most probable
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family. We analyzed patient age at TB diagnosis, gender, geographic origin, and the 

time foreign-born patients had spent in the US before the advent of the infection, 

with respect to the identified families.

5.2 Results and Discussion
We present the results of the patient data analysis for the MTC strain isolates 

in the families identified using the SpolDB3-based model. We limited our discussion 

to the families identified using this model, since the prototypes for these families were 

previously expert-defined based on the global international spoligotyping database 

[35]. Moreover, the major families have been described by different research groups 

studying MTC isolates obtained from TB patients from different countries [1, 14, 

81, 113, 117],

The isolates comprising the NYC database were grouped into the 36 families. 

All except one of the resulting families contained at least one isolate: none of the iso­

lates was identified as belonging to the M. microti family. Family LAM6 contained 

only one isolate. The 15 stable families, EAI3, LAM3, Haarleml, Beijing, X2, CAS, 

LAM4, T4, X3, EAI5, M. 6ovis-BCG, 33, 34, EAI2, and M. africanum, character­

ized by stability values greater than 0.7, represented the most robust cases, since 

the RIM identified them in the same content as the SpolDB3-based model. Never­

theless, we discuss all of the 35 families. The low stability value indicates that the 

family would be difficult to identify by our method given little or no prior knowledge 

about the family; however, the family may still represent a natural grouping.

Analysis of the data on US-born and foreign-born individuals showed that the 

dynamics of transmission of MTC isolates within these two groups of patients varied 

with the identified families. In the NYC database, the number of TB cases among 

foreign-born persons prevailed over that of the US-born infected persons (72% versus 

28%, respectively).

Figure 5.1 shows the variation in the number of US- and foreign-born patients 

in different MTC strain families. In the majority of the families (27/35), isolates 

from foreign-born patients clearly prevailed. The histograms for four families, X2, 

X3, LAM4 and LAM5, demonstrate the predominance of US-born patients; in LAM4

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



51

this prevalence is particularly strong. Small families T4, T3 and EAI1, as well as a 

medium size family LAM8, comprise roughly equal number of strains isolated from 

patients born inside and outside the US.

The groups comprising US- and foreign-born patients can be divided into sub­

groups of clustered and unique cases. In an epidemiological language, a cluster is 

defined as a set of two or more isolates recovered from different patients and pos­

sessing identical genotypes. In other words, each cluster is a shared type observed 

in the NYC database. We were interested in distinguishing clustered and unique 

cases for the following two reasons. First, it is widely assumed that clustered cases 

are more likely to be directly or indirectly involved in the same chain of TB trans­

mission, while unique cases are more likely to result from the reactivation of latent 

infection [10]. The second reason was that when an isolate with a unique genotype 

is encountered, it is difficult to make a plausible suggestion on its origin. When the 

unique isolate belongs to a particular family, we can draw inferences about this case 

based on the information about other strains in the family.

Figure 5.1 depicts the total number of cases that belong to one or another 

shared type as opposed to the isolates that have no match in our database. We will 

call the latter isolates non-clustered or unique. However, one should remember that 

they are unique given the NYC database only; other databases may contain these 

isolates as well. The dissimilarities in the number of clustered and non-clustered 

cases in different families are apparent. In the overwhelming majority of the fam­

ilies, the non-US-born clustered cases predominate. The M. africanum  and EAI5 

families showed unusually large percentages of unique spoligotypes from strains in­

fecting non-US-born patients. Taken together with the observation, which is dis­

cussed below, that these patients immigrated from their countries of origin relatively 

recently, this fact suggests that the TB transmission occurred primarily outside of 

the US. About a third of the families (LAM3, Haarleml, X2, T4, Family33, LAM9, 

LAM8, Haarlem3, X I and S) contain nonnegligible number of isolates with unique 

spoligotypes obtained from US-born persons. These cases should be given particular 

attention since they most probably indicate the recent transmission of TB. Besides, 

TB control measures are more effective when targeted toward US-born patients
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[45, 79]; therefore, an outbreak can be stopped at an early stage. The described 

trends can be further investigated by examining the age and immigration date for 

each foreign-born patient.

The majority of non-US-born patients carrying MTC strains that belong to 

large strain families originated from particular geographic regions. Figure 5.2 shows 

geographical origin of patients in the 35 MTC strain families. EAI3 and CAS contain 

strains isolated mostly from patients that came from the Middle East and Central 

Asia. Isolates obtained from patients born in these regions are also abundant in 

EAI5 and family 33. Members of the Haarlem2 and LAM2 strain families were 

isolated mainly from the patients originated in the Caribbean. Patients infected 

with isolates included in family LAM4 were predominantly born in the US. More 

than half isolates in the M. 6ows-BCG family were obtained from the Mexican- 

born patients. The majority of the Beijing and EAI2 isolates were collected from 

patients born in Far East countries. Isolates from Africa-born patients dominated, 

as the name implies, in the M. africanum  family. The majority of the isolates from 

family LAM 10 are also obtained from African-born patients. Several big families, 

such as Haarleml, LAM9, T1 and Haarlem3, encompass MTC strains isolated from 

patients that represent all of the eight geographic regions considered . The isolates 

from three Canadian-born patients are a little difficult to see on Fig. 5.2: each of 

them belongs to a different family: X2, LAM9, and Haarlem3.

Examination of the duration of time spent in the US by foreign-born patients 

before they were diagnosed with TB revealed that most of the immigrants in the 

identified families had been in the country for less than 20 years by the time they  

developed the active disease. This indicated that, most probably, the majority of 

TB cases among the foreign-born persons were due to the reactivation of the latent 

infection, which was previously shown for NYC [45] and Massachusetts [116]. There 

is also a possibility that the immigrants acquire new infections or reinfections, either 

through transmission within the US, which may be associated with their residing 

in communities populated by other immigrants, or through frequent visits to their 

country of origin. This scenario was suggested to explain high incidence rates of 

TB among the immigrants in the Netherlands a decade after their immigration date
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[151]. Figure 5.3 shows the age and time spent in the US at the advent of TB  

by the immigrants from different geographic regions. The green dots appearing 

on the diagonal show the age of the US-born persons carrying MTC strains that 

belong to the family. This figure illustrates the overall distribution of MTC strain 

families by geographic regions. Analysis of families EAI3, M. africanum, CAS, 

EAI2, LAM 10 and EAI4 showed that most isolates within them were obtained from 

non-US-born patients that have been in the country for less than 20 years and 

each came from a particular geographic region. This suggested that these patients 

contracted TB before coming to the US [45]. In contrast, examination of isolates 

from Beijing, Haarleml, LAM9, T l, and Haarleml families revealed that many (but 

not the majority) of them were recovered from foreign-born patients of various ages 

that have been in the country for more than 20 years. These infections may have 

been acquired in the US; alternatively, strains from these families possess higher 

ability to host adaptation [43, 54], We can observe in Fig. 5.3 that in NYC, 

on average, foreign-born TB patients were younger than US-born. The patients 

infected with M. bovis-BCG strains were unusually young, which is elaborated in 

more details below.

Ordinarily, it is easier to elucidate the dynamics of TB transmission among US- 

born patients than among foreign-born ones [45]; therefore, it is more informative 

to assess the age distribution among US-born patients. Figure 5.4 allows us to 

examine the age of US-born persons infected by the MTC strains. This figure also 

shows the number of US-born patients within each family. The median and average 

age of the studied US-born population were both 45. The age distribution by families 

noticeably varied. Some families, such as CAS and M. bovis-BCG, contained isolates 

from unusually young US-born individuals, which suggested further investigation of 

these groups. Families M. africanum, 34, T2 and Haarlem2 each contained a small 

number of isolates from patients aged over 60 years. Family M. bovis-BCG  presented 

a very interesting case. Our results demonstrated that: a) the majority of TB  

patients in this family are from Mexico; and b) US-born patients in this group are 

very young. It turns out that this family contained isolates from persons infected as 

a result of an outbreak occurred mostly among Mexico-born NYC residents and US-
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born children of Mexican parents, presumed to have contracted TB by eating cheese 

made in Mexico from unpasteurized cow’s milk [89]. The spoligotype pattern specific 

for the largest shared type in the outbreak, described by the 264073777777600 octal 

code, was found in almost half of the M. bovis strains isolated from the patients in 

our database.

Concomitant analysis of Fig. 5.3 and Fig. 5.4 allows making some interesting 

observations. For example, family 34 contains two elderly US-born patients of almost 

the same age. They are in fact infected with strains bearing an identical spoligotype 

(data not shown), which makes it highly probable that these two cases are involved 

in the same chain of recent transmission. Other explanations are possible, but 

these belong to the realm of epidemiologists. The X3 family included a group of 

mainly Caribbean immigrants aged over 40 years that have been in the US for at 

least 20 years. In this family, 12 persons shared the same spoligotyping pattern, 

which might be indicative of a recent outbreak among these long-time US residents. 

Alternatively, they all could have acquired the infection abroad and carried it for 

a long time before developing the active disease. The LAM4 family, comprising 

largely US-born patients, obviously manifests the spread of TB within NYC. The 

persons in this family should be an easier target of TB control practices; it has been 

demonstrated that US-born persons are more amenable to TB control measures, 

whereas dealing with infection among foreign-born individuals, especially when they 

carry latent infection, requires different measures [45].

The age of non-US-born patients, especially those born in countries with high 

incidence rates of TB, was skewed by the age at which the patients immigrate to the 

US, and may not reflect a real trend in the dissemination of TB. Figure 5.5 depicts 

the age distribution in foreign-born TB patients. The median and average ages are 

38 and 42, respectively. It is apparent that age does not vary from family to family 

as much as in US-born patients. Again, the M. bovis-BCG family comprises the 

youngest patients.

Different research groups consistently observed that among TB patients male 

patients significantly prevailed over females [80, 108, 136]. Salihu et al. (2001) 

showed that males are at approximately twice the risk for the diseases than females
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Figure 5.4: Top: Box plot of age at TB diagnosis of US-bom patients by MTC strain families. The horizontal dotted line indicates 
median age. Bottom: Box plot displaying an approximate size of each of the families
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[108]. Overall, the NYC TB patient demographic data were consistent with this 

finding. Among the identified strain families, M. bovis-BCG is of interest in the 

context of patient gender distribution since it contained approximately equal number 

of persons of both genders. This reflected the fact that the majority of persons 

infected by strains from this family were young and was in accordance with an 

observation that from birth and up to the age of 24, there is no difference in TB  

risk by gender [108].

Family 36 consisted of equal numbers of males and females. In three EAI 

families, 1, 2 and 4, as well as in the LAM7 family, the number of females was 

higher. In the EAI1 family, the majority of the foreign-born patients (8/11) from 

several geographic regions have been in the US for less than 20 years (see Fig. 5.3), 

which indicates that the infection had been acquired abroad. The same applies to 

the EAI4 family, in which eight out of 11 strains were obtained from Vietnamese 

TB patients. One of these eight has been in the country for almost 22 years; the 

rest, for less than 16. A similar situation was observed in the EAI2 family, in which 

79% of the isolates (59/75) came from the Philippines, a high TB burden country; 

57 of the 59 have been living in the US for less that 21 years. The LAM7 family 

contained spoligotypes very different from the family’s prototype, the main two 

of which had octal codes 776160000000071 and 776177400000171, defined as rare 

shared types (ST) 105 and 106, respectively, in SpolDB3. In this family, 13 out of 

17 foreign-born persons have been in the US for less than 20 years. The foreign- 

born TB patients in the described families most probably acquired their infections 

outside of the US; therefore, the gender distribution within these groups of patients 

reflected immigration statistics. In 2000, a total of 42,197 males and 46,699 females 

immigrated to NYC [103].

We have closely examined the trends in the MTC data on patients from four 

countries with high incidence rates of TB: China, India, Ecuador, and Mexico.

The immigrants from these countries contribute most to the NYC’s TB mor­

bidity. Therefore, these groups are of particular interest to epidemiologists at whose 

request we designed several interactive methods for studying closely the TB dynam­

ics within the countries with a high prevalence of TB (data not shown). Figure
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Figure 5.6: Gender distribution in TB patients from NYC database by MTC strain fami­
lies

5.7 shows that the isolates from the four countries of interest occur in many of 

the spoligotyping families. Nevertheless, the majority of these isolates compose a 

few large families. Figure 5.8 demonstrates the distribution of the total number of 

isolates collected from patients born in each of the four countries.

The overwhelming majority of isolates from Chinese-born patients are allo­

cated to three major families, Beijing, T, and Haarlem3; 15 isolates were identified 

as belonging to Haarleml family. All of these four families are prevalent worldwide, 

which has been demonstrated in Fig. 5.2. The ubiquitous Beijing type, which in 

1995 was shown to characterize >  80% of isolates from China and to be a pre­

dominate strain in neighboring countries [150], has subsequently been associated 

with outbreaks or microepidemics worldwide [47]. Beijing/W  strain is highly drug- 

resistant and caused large nosocomial outbreaks in NYC in the early 1990s [1]. The 

Haarlem type has recently been reported to have epidemic potential as well [81]. T, 

still poorly defined, is also a widespread family. It is noteworthy that many of the
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Figure 5.7: Time spent in the US by the onset of TB versus age of patients from the four 
countries with high incidence rates of TB, by the families identified using the 
SpolDB3-based model. Families are sorted by stability

Chinese-born patients infected with Beijing strains are aged over 40 and have been 

in the US for more than 20 years. This large family evidently includes TB cases 

resulting from both recently transmitted and reactivated latent infections. Figure 

5.9 helps elucidate the duration of time spent in the US by the patients from the four 

countries of interest versus their age at the advent of TB. Interestingly, all except 

one patient in Haarlem3 had come to the US less than 20 years before the onset of 

TB, which indicated that their infections were imported.

The same four families containing isolates obtained from Chinese-born patients
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Figure 5.8: Total number of isolates obtained from patients born in India, China, Ecuador 
and Mexico, by the families identified using the SpolDB3-based model. Fam­
ilies are sorted by stability
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Figure 5.9: Distribution of age versus time in the US at the onset of TB in patients from 
the four countries with high incidence rates of TB
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include the majority of the patients from Mexico. In 2005, 25% (1930/7656) of 

foreign-born cases in the US were reported in persons from Mexico [90]. Mexican- 

born patients from the NYC database are m ostly aged between 20 and 40, with some 

outliers. The M. bovis-BCG, which was discussed above, requires special attention 

of TB controllers.

Isolates from patients born in Ecuador, a country with a very poor TB control 

[56], are found mostly in T, Haarleml and Haarlem3. Additionally, they total 30 

in the LAM9 family, which can be considered a superfamily since its prototype is 

a parent of the prototypes for the LAM 1-8 families. Noticeably, Ecuadorian-born 

patients are, on average, relatively young, being aged below 40, and have not been 

in the US for a long time.

Isolates from patients originated in India, which accounts for 30% of TB cases 

worldwide, are prevailingly found in the CAS, EAI3, and EAI5 families. CAS has 

been shown to be a predominant genotype family in India [117]. In general, India is 

characterized by a TB dynamics different from that of other high burden countries.

The analysis of the countries with a high prevalence of TB reveals that most 

of the associated TB infections in NYC are caused by the isolates from a few ubiq­

uitous families. We had at our disposal important but limited information on the 

foreign-born patients residing in NYC. When an isolate is classified into a prevalent 

worldwide genotype family, this fact alone is usually insufficient to provide clues into 

its origin to TB controllers. Additional genetic marker analysis and/or traditional 

epidemiological methods should be employed in this case. We can also conclude 

that in NYC preventive measures should be targeted toward recent immigrants.

In summary, our results demonstrated that the majority of TB cases reported 

in 2001-2004 in NYC occurred among foreign-born persons. This correlated with a 

prior observation that in NYC TB affects mostly the non-US-born population [136]. 

Our study corroborated a previous observation that US-born patients are more 

likely to belong to a cluster (in the epidemiological sense) than foreign-born persons 

[114, 116]; on average, non-US-born groups contained more shared types than the 

US-born patients within the same family. In addition, families CAS, EAI2, EAI5, 

and M. africanum, where foreign-born persons absolutely predominated, contained
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a significant number of unique isolates. Clustering is often assumed to indicate re­

cent transmission of TB, while appearance of unique genotyping patterns suggests 

reactivation of latent infection [10]. Many different and often hard to track fac­

tors contribute to TB occurrences [61]; therefore, we believe that it is crucial to 

be very careful about making these assumptions based solely on genotyping data. 

For example, recent transmission may be underestimated when young patients are 

studied, and overestimated in the case of older individuals [152]. We can recog­

nize some interesting patterns in the analyzed families and make suggestions on the 

associated TB dynamics. Thus, while the majority of the families contain mostly 

foreign-born patients, in several of the identified families US-born persons largely 

predominate. Clustered isolates within these families are most probably indicative 

of recent transmission. Unusually high number of unique isolates in family EAI5, 

taken together with the observation that these isolates were obtained from relatively 

young patients who originated in several different continents, strongly suggests mul­

tiple cases of reactivation of latent infection. Family M. bovis-BCG encompassed 

isolates from anomalously young persons and was discovered to  result from a recent 

outbreak confirmed using genotyping data and by identified epidemiological links 

[89]. Average lower age of non-US-born patients than that of US-born persons, 

higher variations in shared types (data not shown) and a larger number of unique 

isolates among foreign-born persons suggest that most of these TB cases are due 

to imported infection. This is consistent with the previous finding that imported 

infection, either active or latent, is the cause of most TB cases among foreign-born 

persons in the US [144, 157]. The possibility of acquiring the infection in the US 

is much higher for non-US-born persons who have been in the country for over 20 

years [116]. However, immigrants from countries with high rate of TB incidence can 

develop active disease even after having lived in the US for over 20 years [157].

We can conclude that patient data give an indispensable perspective on the 

spoligotyping families. Our results demonstrate the benefits of identifying the fam­

ilies as opposed to traditional epidemiological approach of searching for clusters of 

identical genotypes. We can detect unusual patterns of the patient data within the 

families; this would have been missed if we were to investigate our database as a
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whole. Our results allow us to reveal unsuspected trends in the infection spread and 

suggest possible scenarios of TB dissemination, thus directing efforts of TB control 

practices.
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CHAPTER 6 
Alternative methods of analysis of 

spoligotyping and patient data

The mixture model approach proved to be well suited for clustering MTC strain 

data. We also demonstrated that examining patient data in the context of spolig­

otyping families could be beneficial for TB epidemiology purposes. Here, we were 

interested in further improvement of our algorithm and discovering other approaches 

to model spoligotyping and patient data. Adopting existent techniques requires their 

thorough analysis. Modifications to known methods and new directions can be pro­

posed based on the results of our experiments. In this chapter, we talk only about 

clustering as a statistical analysis technique of discovering natural groupings in the 

data, as opposed to identifying clusters of identical genotypes, routinely performed 

by epidemiologists.

We explored four alternative methods for analysis of the MTC strain data. 

First, we exploited principal component analysis, an essential multivariate data 

visualization technique, in an attempt to discover a suitable means for compact 

representation of our data and assessing clustering results. Second, we constructed 

joint mixture models for clustering combined spoligotyping and patient data. Third, 

we ascertained the possibility of using Bayesian networks for the mixture modeling. 

Lastly, a co-association matrix was created as a way of merging results of multiple 

clusterings, or a clustering ensemble. Visualization of the co-association matrix was 

shown to be a helpful tool in the exploratory analysis of the clustering results.

Validation of the results of our analyses presents a rather challenging prob­

lem, because the information available to date on the global spoligotyping families 

is limited to their prototypes, represented by the actual shared types [35]. Nev­

ertheless, as more strains are being spoligotyped and new families are delineated 

within the global spoligotyping database, we become equipped with more tools to 

validate the results of the identification of MTC strain families. The fourth interna­

tional spoligotyping database SpolDB4 has became publicly available recently [13].

67
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SpolDB4 contains 62 prototypes for the MTC spoligotype families, thereby adding 

26 new potentially phylogeographically-specific families. We discover that some of 

the families identified by our models correspond to the families that have been newly 

defined within the SpolDB4 database.

6.1 Principal component analysis
Principal component analysis (PCA) is a canonical statistical procedure widely 

used for dimensionality reduction of multivariate data. PCA transforms a number 

of correlated variables into a smaller number of uncorrelated variables called prin­

cipal components. In essence, the method discovers the linear projections of the 

maximum variability in the data onto the lower dimensional subspace. The first 

principal component accounts for the greatest amount of the variation in the data; 

each succeeding component accounts for the next largest amount of variation and 

is independent of the preceding principal component. The maximum number of 

possible principal components is equal to the number of variables.

We have applied a logistic PCA to our spoligotyping data, which was devel­

oped especially for binary data [110, 140]. Logistic PCA is based on a multivariate 

generalization of the Bernoulli distribution. PCA computes a compact and optimal 

description of the data set; therefore, we were interested in examining the first few 

principal components constructed from the spoligotyping data.

Figure 6.1 shows the first three principal components selected among the orig­

inal binary NYC spoligotyping data. The data points belonging to spoligotype 

families, or clusters, which PCA separates with varied success, are shown in differ­

ent colors. All other clusters are superimposed on the axis origin and not shown. 

The families were identified using the SpolDB3-based model. The first three princi­

pal components capture the variation in our data associated with the major families 

that possess very distinct spoligotype signatures. The best separation was achieved 

for the Beijing, T l, Haarleml and CAS families. The isolates from the LAM families 

are plotted together since their binary prototypes are very similar. Besides, orig­

inally all of the LAM families were defined as one superfamily [113]. The logistic 

PCA does not account for the biological nature of spoligotypes; nevertheless, we
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Figure 6.1: First three principal components found using the logistic PCA within the 
original spoligotype NYC data. Only the isolates belonging to the families 
that were separated are shown

can observe that it attains some success in extracting the directions of the highest 

variance within spoligotyping data and can be a useful tool for the visualization of 

the genotype families.

6.2 Joint mixture models
Analysis of the demographic data on patients infected with MTC isolates con­

stituting the spoligotyping families proved to be valuable in discovering interesting 

TB trends. Ideally, the more information we have on TB cases, the more robust 

models we can potentially construct. However, this is only true if different types of 

data complement each other, together providing adequate information to discrimi­

nate well among MTC isolates. For example, the MIRU typing [132, 134] may not 

be able to provide sufficient discriminative power to resolve the genetic homogeneity 

of the Beijing family’s spoligotyping patterns [65].
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Family Total (n) Description

Beijing 394

T1 481

T2 18

T3 15

T4 28

Haarleml 136

Haar!em2 30

Haar1em3 273

X1 0

X2 75

X3 135

EAI1 30

EAI2 73

EAI3 31

EAI4 15

EAI5 38

M. africanum 33

M. bovis-BCG 31

M. microti 2

CAS 133

LAM1 11

LAM 2 47

LAM3 49

LAM4 51

LAMS 25

LAM 6 53

LAM 7 22

LAM8 40

LAM9 224

LAM10 50

S 29

H37Rv 34

33 32

34 11

35 18

36 19

■□□□I
wmmsaaaaom

■ ■ m n n n r T n n m a

■□
■□■■con
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■ □ □ m i
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0.7 0.6 0.5 0.4 0.3 0.2 0.1

Figure 6.2: Summary of the families identified within the NYC spoligotyping data us­
ing the SpolDB3-derived prototypes for model initialization. Probability of 
a spacer in Hidden Parent is represented by colored box; gradation of colors 
corresponds to probabilities of the spacer’s presence: white indicates 0 and 
black indicates 1
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Family Total (n) Description

Beijing 395

T1 254

T2 30

T3 6

T4 29

Haarieml 135

Haarlem2 30

Haariem3 276

X1 232

X2 73

X3 135

EAI1 28

EAI2 73

EAI3 32

EA14 12

EAI5 40

M. africanum 33

M. bovis-BCG 31

M. microti 1

CAS 133

LAM1 3

LAM2 6

LAM3 48

LAM4 49

LAM5 26

LAM6 49

LAM7 22

LAM8 39

LAM9 278

LAM10 40

S 29

H37Rv 34

33 37

34 11

35 18

36 19

□□□□■

■□■□□□□□a ■■■□□□□a
■□□□□□□a

0.3 0.2

Figure 6.3: Summary of the families identified within the NYC spoligotyping and patient 
data using the SpolDB3-derived prototypes for model initialization. Probabil­
ity of a spacer in Hidden Parent is represented by colored box; gradation of 
colors corresponds to probabilities of the spacer’s presence: white indicates 0 
and black indicates 1
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In this section, we constructed joint mixture models integrating spoligotyping 

and patient data. The goal of the experiment was to assess whether the simultaneous 

modeling of spoligotyping and patient data helps in identifying the MTC strain 

families.

The NYC database contained information on the patient age, region of origin 

and time spent in the US at the advent of TB by the foreign-born patients. Here, 

we utilized these features in the context of a joint mixture model. The gender 

of each patient was also available; however, since this characteristic does not vary 

sufficiently in different families and in some families simply reflects the immigration 

statistics, we excluded it from the analysis. We did not have at our disposal a 

sufficient amount of any type of genotyping data other than spoligotyping.

We employed a joint mixture model that assumed that spoligotypes and the 

patient characteristics are independent of each other, conditioning on the family. 

Now, instead of finding the probability with which each spoligotype belongs to each 

of the families, we estimate this probability for each TB case associated with a 

particular patient. The probability of a case y  =  {x , a, r, t }  being generated by a 

model C  can be stated as follows:

where x  is a spoligotyping pattern, a  is the age, r is the region of patients’ origin, 

and t  is the time from the arrival in the US until the onset of TB for foreign-born 

patients. The time variable for US-born patients was equal to their age.

The age and time variables, being originally represented as continuous vari­

ables, were identically discretized into 7 following bins: (0,5], (5,20], (20,30], (30,40], 

(40,50], (50,60], and (>  60). For the time variable, the important points were 5 and 

20 years spent in the US by the foreign-born patients. It is widely assumed by epi­

demiologists that if a foreign-born TB patient has spent less than 5 years in the US, 

he/she has most probably contracted the infection abroad. If this patient has been 

in the US for more than 20 years, the infection is considered to be acquired within 

the US. Persons born in countries with high incidence rates of TB may present an

k
(6 .1)
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exception to this case: these TB patients were observed to have developed active 

TB from the acquired abroad latent infection even after having been in the US for 

more than 20 years. The geographical regions were divided into 8 bins (m  =  8) as 

described in Chapter 5. Three isolates obtained from the Canadian-born patients 

were included in the group of isolates from the US-born patients.

The age and region variables were each equivalently modeled as a mixture 

of multinomial distributions wherein each mixture component corresponded to a 

family. Multinomial mixture models have been successfully used for text clustering 

[88], internet traffic clustering [63] and other problems. Multinomial distribution of 

a set of random variables {si, • • • , sm} is a probability function

M 1 m
P(si -  sr, • • • , sm = sm) = • n  esh\  (6.2)

i l f c = l  S h • h=1

where Sh are nonnegative integers, X X = iXh =  XX=i =  U and Oh >  0. If

m  — 2, the multinomial distribution reduces to the binomial distribution. In the 

multinomial distributions for age and region, m  = 7  and 8, respectively. In our case 

M  =  1, since each patient has a particular age and region of origin; therefore, the 

combinatorial term can be omitted. The probability that the model C  has generated 

each of the age and region variables is defined as, for example, for the age:

k m

P(a) = X ;P fe)IlK J- <6-3)
j=l  h=1

where pajh is the probability that the age of the patient falls into bin h and ah =  1, 

since this is the number of different age variables in bin h.

We assume that the spoligotype, age, and region variables are mutually in­

dependent. The time variable, however, is dependent on both the age and region 

variables. Time is age-dependent because, if a =  a and t =  t, P ( t  >  a) — 0. The 

time that a foreign-born patient has spent in the US cannot be greater than his/her 

age. Time also depends on the region of origin because if a patient is born in the US, 

P ( t  — a) — 1. When the class is known, time depends only on age and region. The 

total log-likelihood function of the model parameters given the combined genotyping

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



74

and patient data is defined as follows:

n k

L(G \X )  =  ' * r i o g ^ 2 P ( c j ) P ( x i \cj )P (a i \cj ) P ( r i \cj )P{ t \a i , r i), (6.4)
i= 1 j =l

where P(x,|c,-) is defined in Eq. 4.4, and P(ai\cj)  and P (ri |cJ) are defined as in 

Eq. 6.3. When mixture component is known, the time variable depends only on the 

age and region variables. The P ( t  =  t |a  =  a, r =  r) was estimated from the NYC 

database. The spoligotyping data are modeled, as above, using the multivariate 

Bernoulli mixture model.

The EM algorithm was again used to estimate the optimizing parameters for 

now four types of data on each patient.

A lg o r ith m  3: EM algorithm for joint mixture model

1. Choose initial parameter setting 0 '  =  (P '(c i) , • • • , P'(ck),0[,  • • • , 9'k}.

2. Repeat until convergence:

The multivariate Bernoulli mixture model for the NYC spoligotyping data was 

initialized with the original SpolDB3-based prototypes. For the sake of consistency, 

we did not employ here the model trained on the New York State database, since 

these database did not contain patient information. It did include cumulative in­

formation on the countries of origin of patients associated with each shared type, 

which is available on our web site. This information however was not well suited for

E-step:
■nil. \ n<— l _  \nl.  I. \  n / . _  t _  \  r » / . i l  . . .  \

, i =  { ! ,• • •  ,n } , j  =  { ! ,• • •  ,k } .

M-step:

V jfc  =  Er=1? ^ lr\  j  =  {1, • • • , k}, h =  {1, • • • , 8}. 

* S e t e  =  { p ( Cl) , - - .  , p ( c k) , e u --- A } .
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our method. Parameters for the multinomial probability distributions of the patient 

data variables, age and region, were initialized uniformly.

The results produced by the joint mixture model, which are shown in Fig. 6.3, 

were compared to the families identified by the model identically initialized with the 

SpolDB3-based prototypes and employing spoligotyping data only (Fig. 6.2). The 

comparison was performed by the visual inspection of the resulting families. The 

results showed that adding the patient data helped identify some of the families. We 

report only the results that we observed consistently, with different bin assignment 

and varied parameters m n  and moo• These experiments are not shown because 

their validation belongs to future work. However, we are confident that the reported 

improvement in the quality of the three families, given our method and the NYC  

database, reflects the actual effect of adding demographic data to the model. Panel 

(b) of Fig. 6.4 shows that the patient data helped the identification of the T2 family. 

The spoligotypes with spacer 34 present were eliminated from the EAI4 family by 

incorporation of the patient data (Fig. 6.5). This is not surprising, since most of 

the isolates in this family have been obtained from Vietnam. In SpolDB4, the EAI4 

was renamed to EAI4-VNM, where VNM stands for Vietnam [13]. Analogously, 

the LAM10 family, shown in Fig. 6.6, contains predominantly (34/40) African-born 

patients (Fig. 5.2), 28 out of which have been in the US for less than 5 years, and 

the other 6 - for less that 21.

We also performed subclustering of the two large families identified by the 48- 

component RIM when applied to the New York State data (Fig. 4.11). According 

to the global databases SpolDB3 and 4, these two families, the children of the T1 

and LAM9 prototypes, respectively, each contained isolates belonging to different 

genotyping families. We were interested to see whether the patient data could 

help identify smaller subfamilies within these diverse families. We carried out the 

subclustering using the NYC spoligotyping and patient MTC strain data. The 48- 

order RIM was first applied to NYC spoligotyping data, the two families, N24 and 

N19 were identified and then subclustered using: (1) spoligotyping data on these 

families, and (2) combined spoligotyping and patient data. Again, the Bernoulli 

mixture model was used for the experiment (1), and the mixture model of joint
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Figure 6.4: Sequence logo of the T2 family identified by the SpolDB3-based model within 
the NYC database
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Figure 6.5: Sequence logo of the EAI4 family identified by the SpolDB3-based model 
within the NYC database
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Figure 6.6: Sequence logo of the LAM10 family identified by the SpolDB3-based model 
within the NYC database

multivariate Bernoulli and multinomial distributions for the experiment (2).

The largest family N24 containing 700 isolates was subclustered using a 6- 

component model containing the SpolDB3-based prototypes for families T l, T2, 

T3, T4, Haarlem3 (H3), and X I. These six prototypes were chosen based on the 

visual inspection of the 700 isolates. Figure 6.7 shows the Hidden Parents for the six 

subfamilies identified within the superfamily N24. When the combined data were 

used as compared to spoligotyping data only, family T2 contained more isolates 

matching the prototype for this family (34 and 15, respectively). The patient data 

helped identify the T3 family. The T3 family in both cases contained two undesig­

nated shared types, one having octal code 777703777760771, denoted as ubiquitous 

rare in SpolDB3, and its child with octal code 777703737760771 that is not present 

in SpolDB3. Also, when the NYC spoligotyping data only were used, the X I family 

merged with the T l  isolates. Identification of the Haarlem3 family was hampered by 

adding the patient data; Fig. 5.2 and Fig. 5.3 indicate that the ubiquitous families 

T l and Haarlem3 both contain isolates obtained from patients born in all of the 

geographic regions and of all of the age groups. The T family presents the most
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Figure 6.7: Results of subclustering on the “children of T l” superfamily (N24) identified 
within the NYC database using the 48-order RIM. The subclustering was 
carried out using the six SpolDB3-based prototypes

challenging case of identifying reliable families.

Subclustering of the N19 family, containing several subtypes of the LAM su­

perfamily, was carried out using the SpolDB3-based prototypes for LAM1, LAM2, 

LAM5, LAM6, LAM8 and LAM9. These prototypes were chosen based on the vi­

sual analysis of the 336 spoligotypes in the N19 family identified within the NYC 

database. The Hidden Parents for the six LAM subtypes, trained on the two vari­

ants of the NYC data, along with the original SpolDB3-based prototypes, are shown 

in Fig. 6.8.

Integrating the spoligotyping and patient data on NYC TB patients facilitated 

the identification of the LAM2 and LAM5 families. The majority of the isolates in 

the LAM2 family were obtained from patient born in the Dominican Republic.
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Figure 6.8: Results of subclustering on the “children of LAM9” family (N19) identified 
within the NYC database using the 48-order RIM. The subclustering was 
carried out using the six SpolDB3-based prototypes

Figure 6.8 demonstrates that the family identified within the combined data using 

the prototype for LAM5 presents an interesting case since its Hidden Parent looks 

like superimposed prototypes for LAM4, LAM5, and LAM6 (see Fig. 4.1). Four out 

of seven spoligotypes in this family have octal code 777737607560731. This shared 

type is documented in the National Quaternary Genotyping report (provided to  

us by NYC epidemiologists for internal use) and so far has been observed within 

the US in New York State only. Three of the patients infected with this shared 

type were born in Ecuador and one in Mali, the largest country in West Africa; the 

four patients are aged between 20 and 30 and have been in the US for less than 3 

years. Of the other two persons in this family, one is from Mexico and one from 

Ecuador; both are also very recent immigrants. This information demonstrates that
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the strain is imported. When the NYC spoligotyping data only were used, the family 

initialized with the SpolDB3-based prototype for LAM5 resulted in a mixture of 

LAM1 and LAM2 isolates. In both of the experiments, the families identified using 

the LAM1 prototype had seven out of the total of 11 isolates bearing a spoligotype 

with octal code 077777607760771, which does not correspond exactly to any of the 

LAM families and is coined as rare in SpolDB3 [35]. The same applied to the LAM8 

family that contained a shared type 777777000760771, a child of the prototype for 

this family.

It is obvious that the large superfamily LAM contains diverse assortment of 

spoligotypes which have not been yet divided into families. Patient data can help dis­

criminate among these families. We summarize that subclustering can be employed 

as a simple and fast method to roughly elucidate the structure within complex 

families.

6.3 Co-association matrix as a method of combining multi­

ple clusterings
In Chapter 4, we discussed that different families could be identified depending 

on the initial model parameters and the subsets of the data used. There obviously 

are many possible families that could be identified within our data. One can infer 

that if we are to analyze a global database having much higher spoligotyping pattern 

variability, the number of families that are potentially meaningful from computa­

tional and epidemiological points of view becomes very large.

Data clustering usually yields different results depending on the algorithm  

used, initial parameters, noise in the data and other factors. Clustering ensemble 

presents a way to exploit different partitions in the data. Various techniques can 

be used to generate different clusterings and the next challenging task could be to 

extract the consensus or the most optimal clustering partitions, which do not have 

to be the same.

A perturbation of the data set is often used to generate different clustering 

solutions and assess the stability of the clustering method. One way to perturb the 

data is to subsample the data points. While employing the MCCV approach [55], we
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subsampled the New York State database in order to estimate the optimal number 

of spoligotyping families. A theoretical basis for cluster validation by subsampling 

asserts that if the clusters capture real structure in the data than they are stable to 

minor perturbations. This approach is most appropriate when the data set possesses 

some redundancy. Another data perturbation approach is adding random noise to  

the data [7]. A spoligotype accompanied by the infected patient’s data represents 

an actual TB case and cannot be “perturbed” . Here we adopted an alternative 

approach of perturbation of the original SpolDB3-based prototypes by introducing 

randomness.

We investigated a powerful approach of combining multiple clustering parti­

tions into a co-association, or co-occurrence, matrix that allows extracting different 

consensus partitions of the data [41, 57, 141]. This technique easily incorporates 

clusterings that differ in parameters, number of components, and that can be gener­

ated using different algorithms. The co-association matrix for clusterings of a data 

set of size n is a n x  n  matrix where each entry (i, j )  contains the number of times 

the data points i and j  occur in the same cluster, divided by the total number of 

clusterings. The cut-off value is used to join the data points into clusters. For ex­

ample, if the cut-off value is 0.5, the data points that appear in the same cluster in 

50% or more of the data partitions are placed in the same cluster in the consensus 

partition. Thus, different cut-off values allow us to extract different clusterings.

We analyzed the NYC database to exploit the applicability to our problem of 

the co-association matrix construction and processing. The SpolDB3-based proto­

types were perturbed by introducing the 0.3% of randomness to  each of the multi­

variate Bernoulli parameters for each of the model components. We generated 100 

clusterings of the spoligotyping data. The same randomly perturbed prototypes 

were utilized to identify the families within the spoligotyping data merged with the 

patient data. The multinomial distributions for the age and region variables were 

initialized uniformly, without introducing additional randomness. Again, 100 clus­

terings were produced. The most stable clustering solution was recovered, based 

on the stability value calculated as described above. The two co-association matri­

ces, one combining a clustering ensemble created using spoligotyping data only and
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another representing a clustering ensemble created using spoligotyping and patient 

data, were compared. The consensus clustering was also derived from the matrices.

It has been already discussed that as of today the pairwise distance between the 

spoligotyping patterns cannot be accurately devised, since the order and the number 

of DVRs that can be simultaneously lost or interrupted by insertion elements are 

unknown. The co-occurrence matrix can be used as a similarity matrix for the data 

points: the value of each matrix entry ( i , j )  indicates approximately how similar 

the two data points are. A convenient visualization toolkit, CLUSION, has been 

created to convert high-dimensional data into a perceptually more suitable format 

[130]. CLUSION reorders the data points according to a clustering solution A so that 

the same cluster labels are contiguous, and then visualizes the resulting permuted 

similarity matrix. The original n x n  similarity matrix S is permuted with an n x n 

permutation matrix P , entries of which are defined as follows:

Pij
1 +  
0 otherwise

where lij is the entry of L, a binary matrix representation of the cluster label vector 

A. The indicator matrix L is defined by each entry ltJ as

1 if A< =  j  

0 otherwise

The permuted similarity matrix S', the label vector A' and data matrix X ' are

S' =  P S P ', A' =  PA, X ' =  P X .

Seriation is defined as a reorganization of the dissimilarity values of a data 

matrix and has been used in various contexts, mainly in archaeology, psychology, 

and ecology (see, for example, [106]). It consists in bringing low dissimilarity (i.e. 

high similarity) values as close as possible to the main diagonal of the matrix. The 

seriated similarity matrix S' provides a relationship-centered view and is very useful
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Figure 6.9: Seriated similarity matrices. Cluster labels are produced by the most stable 
model among each of the 100 clusterings
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for visualization [130]. We adopted the underlying idea of the matrix seriation and 

reordered the data points within the co-association matrix according to the cluster 

labels produced by the most stable model. Figure 6.9 contains the two seriated 

matrices.

The gray-level images readily show the 36 identified families that initially had 

original order, as in SpolDB3 (see Fig. 4.1) [35]. The block-diagonal rectangular 

areas correspond to the clusters (families), and the intensity within each of the 

areas indicates the expected similarity within the cluster. In addition to examining 

the compact visual representation of the results of the two experiments (using the 

spoligotyping data only versus the spoligotyping data combined with the patient 

data), we manually explored each of the families in the two partitions. Since the 

models were initialized with the perturbed SpolDB3-based parameters, some of the 

identified families were different from those produced by the models initialized with 

the original SpolDB3 prototypes and described in Chapter 4.

The majority of the families previously suggested to be stable were resistant 

to the permutation of their prototypes: the EAI 2-4, M. africanum, CAS, LAM3, 

Haarleml, 33 and 34 again proved to be well defined. M. bovis-BCG and Beijing were 

reproduced perfectly by both of the 100 clusterings. SpolDB4, wherein 62 lineage 

prototype patters were defined, provided new insights into the identified families [13]. 

Family 34 included type ST46 (ST stands for Shared Type) that was recognized as 

“undesignated” in SpolDB4. Similarly, family 36 contained ST4, which was termed 

LAM 3/S in SpolDB4. Stable family LAM4 provides an example of how a new family 

found by our algorithm is defined within the global international database upon an 

increase in the size and diversity of the database. The Hidden Parent for this family 

was quite different from its initial prototype (Fig. 4.9); according to SpolDB4, 

this is the X2-variant 1 family, or lineage. Analogously, the Hidden Parent for the 

stable T4 family, which was significantly different from the family’ prototype, has 

been described as a new T5 family [13]. The prototype pattern for a newly defined 

in SpolDB4 T1-RUS2 family corresponds to the Hidden Parent for the family T3, 

identified in our data. Overall, despite these attem pts to bring order into the T  

families, they are still not well defined [13].
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The visualization of the seriated similarity matrices allows us to conveniently 

see which families were high-quality. The Beijing family, which comprises mainly 

one shared type ST1, is of very high quality and visualized as a dark homogeneous 

area at the top left corner of both matrices. The same applies to families Haarleml 

(HI), X2, X3, CAS, LAM3, EAI 1 and 5, and M. bovis-BCG, which are marked in 

Fig. 6.9. LAM10 is well defined using the randomized T4 prototype. Small families 

are not marked, but the identity of the dark block-diagonal areas corresponding to 

these families can be determining from Fig. 4.1. The families that are different 

from their SpolDB3 prototypes or receive new names upon the public appearance 

of SpolDB4, are marked. Stable families 33-36 are located in the lower right corner 

of the both panels of Fig. 6.9.

The seriated similarity matrices also illustrate which families presented a chal­

lenge for the algorithm. Dark off-diagonal regions suggest that the clusters in the 

corresponding rows and columns should be merged [130]. Panel (a) of Fig. 6.9 shows 

again that the T families are poorly defined: the block-diagonal area, adjacent to 

the Beijing family and marked as T, contains three subfamilies merged together. 

Family H3 overlaps with the big T cluster in some partitions. LAM families, except 

for LAM 3 and 10, constitute two clusters that are candidates for being merged into 

one cluster. Family S, resulted from the T3 prototype with added noise, overlaps 

with the T cluster. EAI5 isolates are occasionally interleaved with EAI1 isolates. A 

T5 family, newly defined in SpolDB4, was identified using the randomized LAM10 

prototypes and is marked in Panel (b) of Fig. 6.9.

The clustering algorithm had difficulty in discriminating among H3 and T 

isolates when the spoligotyping data were modeled jointly with the patient data, 

which is demonstrated in Panel (b) of Fig. 6.9. This happens not only because the T  

and H3 families both have spoligotyping patterns that differ by the absence/presence 

of a very few spacers, H3 prototype being the child of T l  prototype, but also because 

the isolates from these families are found in patients of all age groups and born in 

many different countries. Nevertheless, the isolates characterized by the “children 

of T l” spoligotypes form two large separate clusters, marked as T la  and T ib  in 

Panel (b) of Fig. 6.9. The H3 subcluster can be observed within each of these large
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clusters. The two T clusters are formed because the patient data associated with 

the clusters’ isolates are different. The parameters for the clusters are shown in Fig. 

6.10. For example, cluster denoted as T la  includes isolates only from foreign-born 

patients. Cluster T ib  tends to include more isolates from older patients than cluster 

T ib .

One can observe that the clustering ensemble generated using the combined 

spoligotyping and patient data possesses more variability than the ensemble of clus­

terings of spoligotyping data. This is not surprising, because adding patient data 

only helps in the identification of several families. Panel (b) demonstrates variability 

in the identification of the T families, XI overlaps with H3. On both figures, EAI5 

spoligotypes are shown to occasionally be interleaved with EAI1.

The examination of the areas corresponding to the families initialized with 

perturbed LAM prototypes gives interesting results. Panel (b) of Fig. 6.9 shows 

that the isolates bearing the “children of LAM9” spoligotypes make up two separate, 

but highly overlapping, families. Analogously to the case with the T families, we 

looked closely at the patient variables’ parameters for these two LAM9 subclusters. 

Fig. 6.11 reveals that the LAM9a subcluster has a higher probability of including 

isolates from older patients than the LAM9a subcluster. LAM9a comprises isolates 

mostly from patients born in Central and South Americas, whereas LAM9a includes 

isolates obtained mainly from US- and Caribbean-born persons. The seriated matrix 

in Panel(b) of Fig. 6.9 suggests that the LAM9 and LAM 1, 2, and 5 clusters be 

merged. LAM5 forms a small separate family. Overall, combining patient and 

spoligotyping data seems to be useful in the identification of the LAM families. 

However, only LAM 3 and 10 can be consistently identified as distinct families when 

the SpolDB3 prototypes contain noise. These results once again signify that further 

efforts are required to develop robust algorithms for spoligotyping data clustering.

We also extracted the consensus partitions from the co-association matrices, 

using different cut-off values. The results are not presented here because the con­

sensus clusterings do not provide any interesting results in addition to the analysis 

reported above. Essentially the same families are extracted at the cut-off value 0.5 as 

the families identified by the most stable model. When the cut-off values are higher,
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and therefore more clusters are extracted, the big families do not split into smaller 

ones, but instead more clusters containing one or very few isolates are formed. The 

PCA of the co-association matrices was performed. The results were very similar 

to those produced by the logistic PCA that was carried out using the original data; 

therefore, we do not provide here the PCA plots.

We performed hierarchical clustering of the Hidden Parents constituting the 

two most stable clusterings in an attempt to visualize the models from a perspec­

tive of the structure within the model. The euclidian distance and average linking 

were used, which approximated the unknown actual distances between spoligotyping 

patterns. Figure 6.12 depicts the dendrograms for the two models. We can observe 

that overall branch patterns are almost identical in both cases, which is not unpre­

dicted, since we are looking at the genotyping data parameters only. The families 

with Hidden Parents having many spacers absent, such as Beijing, H2, family 35 

and a few others, are separated from the rest of the families into the major left 

subtree. The major right subtree contains a separate branch for the M. ftoms-BCG, 

M. africanum, X3, and T1-RUS2 (defined in SpolDB4) families. The clustering of 

the M. bovis-BCG and M. africanum types together have previously been observed 

[123]. The Hidden Parents for the EAI families form a separate subtree, with EAI 

1 and 5 belonging to the same leaf node. In essence, we observe that the families 

whose Hidden Parents possess similar spoligotyping patterns, are naturally located 

close at the tree. This representation does not provide any insights into the evolu­

tionary history of the MTC strain families; however, potentially it can be useful in 

the assessment of the overall relationships between existing spoligotyping families.

6.4 Bayesian networks
Our model with hidden variables that together are called Hidden Parent can 

be naturally represented as a directed acyclic graph (DAG). A DAG is a directed 

graph that contains no cycles. DAGs models represent conditional independencies 

among a set of random variables. In our case, an actual spoligotyping pattern is a 

child, or, to be more exact, a set of 43 children, and a Hidden Parent for the child’s 

family is a parent. The parent directly influences the child by “producing” it. This
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Figure 6.12: Dendrogram of hierarchical clustering of the Hidden Parents comprising the 
two most stable models resulted from using the NYC MTC spoligotyping and 
merged spoligotyping and patient data, respectively
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influence is represented by conditional probability. In the mixture model context, 

the child in independent of the mixture component if the parent is known.

In this section we describe our efforts in evaluating the potential of using DAGs 

in the form of Bayesian networks (BN) where each node corresponds to a variable. 

BNs allow us to model the causal relationships between the variables. They also 

readily adopt different structures. Moreover, BNs easily permit introduction of the 

interdependencies of the DVRs within the spoligotyping pattern.

6.4.1 B rief introduction to  Bayesian networks

BNs are graphical models for representing the probabilistic relationships among 

a large number of variables and for doing probabilistic inference with those variables 

[97]. BNs were introduced by Kim and Pearl [68], Lauritzen and Speigelhalter [76], 

and others.

A BN for a set of variables X  =  {X i, ■ • • , X n) is defined as a network structure 

S  that encodes a set of conditional independencies among the variables in X  and a 

set © of local probability distributions associated with each variable. The network 

structure is a DAG. Each node in the graph corresponds to a variable in X. A 

directed arc from a variable X j  to another variable, X*, indicates that X j  is a parent 

of X j. The set of all the parents of the variable Xj is defined as P aj. A conditional 

dependency links the child variable Xj to the set of parent variables Paj and is 

defined by the conditional distribution of the child variable given a configuration 

of the parent variables. In a BN, two children are independent of one another, 

given their parents, and are independent of all other nodes in the network given the 

nodes within their Markov blankets (parents, children, and parents of children). In 

other words, each node is conditionally independent of its non-descendants given its 

parents.

If we consider discrete variables only, then the joint probability distribution 

for X  is given by:
n

P (x )  =  ' £ P ( x i \pai) i (6.5)
i=1

where x — {x i, • ■ • , x n}  is a value for X , Xj is a value for X j, and pa, is a value for 

Pa,. If Xj has no parents, P(xi |pai) stands for P(x,).
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If we assume that the local probability distributions are defined by a finite set 

of parameters 9S €  @s, then the Eq. 6.5 can be represented as:

n

P (x |0 a) =  ^ 2  P fc lp a * , ea). (6.6)
1

Let sh denote the hypothesis that the ’’true” joint distribution for X  can be repre­

sented by the DAG model s and has exactly the conditional independence assertions 

implied by s. We then obtain the following:

n

P (x |0 B, sh) =  J 2  P (* i|p * i. s h). (6.7)
i=1

Many software packages were developed for learning both parameters and 

structure of BNs (for references, see [78]). Once a BN has been constructed from 

prior knowledge, data, or a combination of both, we can determine various proba­

bilities of interest from the model. A BN for data X  determines a joint probability

distribution for X ; therefore, in principle, we can use the BN to infer any probability 

of interest [53].

6.4.2 B N s for M TC strain data

6.4.2.1 M ixtures o f DAGs

In essence, mixture models are one of the special cases of the general graph­

ical model formalism [62]. The multivariate Bernoulli distribution can be readily 

represented by a DAG. Because we are dealing with a number of families, and, 

consequently, with a mixture model, we need to consider mixtures of DAG models 

(MDAG models) [138], where each DAG corresponds to a family. In this situation, 

the joint distribution of our data X  is given by:

\c\
P(x \0s , sh) =  ^ P ( c ) P ( x |0 s, s cft). (6.8)

C — 1

This is a mixture of distributions determined by the component DAG models each 

having a mixture weight P (c). The random variable C  is hidden.
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Figure 6.13: Schematic representation of the BN used to analyze MTC spoligotyping and 
patient data from NYC database. The top node is a class variable; the 
middle layer represents the Hidden Parent for the class {yi,---  , 2/43} and 
the age and the region of origin of patients; and the bottom layer represents 
observed spoligotypes {ari, • * - ,£ 43} and the time in the US spent by TB 
patients by the disease advent

We used the Matlab Bayes Net Toolbox (BNT) [94] to construct all of the 

BNs of interest, as well as to learn their parameters and infer required probabili­

ties. Since BNs easily adopt different structures, at first, we constructed the model 

without Hidden Parents (data not shown). The only hidden variable each model 

component contained was the class variable. The spoligotype pattern was modeled 

as 43 observed variables. As expected, the absence of hidden variables severely dete­

riorated the performance of the model. Each of the identified families was a shared 

type that exactly matched the SpolDB3-based prototype used for the initialization  

of the corresponding component. Therefore, there was no variability within the 

families. One cluster contained an assortment of about 1500 spoligotypes that did 

not match exactly the original prototypes. These results confirm that hidden nodes 

are required to design robust models for clustering MTC genotype data.

Each DAG model included a hidden class variable and 43 hidden nodes each 

having a one-to-one correspondence to the Hidden Parent variables for the family.
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Based on prior knowledge about the MTC strain data, we could construct a BN for 

both spoligotyping and patient data as shown in Fig. 6.13. One can immediately see 

that the graphical representation allows us to visualize the dependency of the time 

variable on the age and region variables. If the class is known, time depends only on 

age and region. These relationships were incorporated in the experiments with the 

joint mixture models described above. If we cluster spoligotyping data only, then 

the three nodes for the patient data are removed. The DAG in Fig. 6.13 shows a 

BN for each of the MTC strain families; the families have identical structures and 

differ only by the parameters. We therefore did not attempt to learn the structure 

of the DAGs that model different families.

We constructed the MDAG model using the BNT and inferred probabilities 

with which each of the data points belonged to each of the families. The junction 

tree engine was employed for the inference of all of the probabilities. We used the 

SpolDB3 prototypes to initialize the model’s components; parameters for the class 

and patient variables were initialized uniformly. Each of the nodes was discrete and 

the patient were discretized as described above.

8sH8588s;S88R88S8Sfi88$5sr8 sa 8 S 8 8 '& 8 8 8 R 8 8 S 8 * S 5  8 8 * 5  93

: 8 a S 8 5 8 8 8 8 R 8 8 8 3 S S 8 5 5 8 8 S 5 9 :’8 5 8 8 8 a 8 f c 8 8 8 R 8 8 3 8 8 S S '8 $ ? 9 3

sssssassasgRsasssssssRsr'8 5 a R S 8 8 fc S S 8 R 8 8 S 8 8 fc 8 8 * 5 3 5

(e) LAM5 (f) LAM6

Figure 6.14: Logos of the families identified by the DAG mixture model schematically 
represented in Fig. 6.13 within the NYC spoligotyping and patient data

We have observed that the MDAG model allowed us to identify families that
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were much more consistent with their SpolDB3 prototypes as compared to the fam­

ilies distinguished by the Bernoulli mixture model, each conforming well to the 

hypothesis of losing DVRs in the course of the spoligotype’s evolution. It was par­

ticularly remarkable in the case of the T families, all four of which matched their 

prototypes well, at the same time as possessed some reasonable variability of the 

patterns. Figure 6.14 shows the logos of the most prominent examples of the high 

quality families identified by the MDAG model. The families’ logos can be compared 

to their respective prototypes shown in Fig. 4.1. Also, Panel (b) of Fig. 6.4 displays 

the logo representation of the T2 family identified by the joint mixture model. The 

comparison of this logo to the one depicted in Panel (a) of Fig. 6.14 clearly indicates 

that the BN is capable of identifying very high quality families. However, when the 

spoligotyping data alone were clustered by the MDAG model, the T families all 

merged into one.

Interestingly, when we tried to change the parameters m 01 and m w , which 

define the probabilities of losing and gaining a spacer from a parent, respectively, 

from the ones used by the EM algorithm described in Chapter 4, different results 

were observed. W hen moi =  10~2 and m w =  10-8 , i.e. it is “harder” for a child 

spoligotype to either gain or lose a spacer, the families identified by the MDAG 

model within either the spoligotyping or the combined data were identical. The moi 

and mio parameters have been fixed throughout this study, but we have started to 

develop the models that would include an optimization step to learn these parame­

ters for each family. Preliminary results of learning these parameters for each of the 

43 positions of each of the model components were not satisfying.

We attempted to undertake the stability analysis of the MDAG models; how­

ever, the models were very sensitive to the perturbation of the initial parameters. 

One of the limitations of the BNs is that the results are highly dependent on the prior 

knowledge. The MDAG models initialized with the randomly perturbed SpolDB3 

parameters did not produce nearly as high quality families as the models initialized 

with the best fitting the data, expert-defined parameters. The validation of the 

MTC data clustering using the MDAG models will be addressed in the future.
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6.4.2.2 M ixtures of Hidden Markov M odels

A Markov model [82] is a probabilistic process over a finite set, {ay, • • ■ , a*,}, 

usually called its states. The model describes at successive times the states of a 

system. At each of these times, the system may have changed from one state to 

another or stayed in the same state. The previous states are irrelevant for predicting 

the subsequent states, given knowledge of the current state. Each state transition 

generates a character from the alphabet of the process. The transition probabilities 

are defined as: pab =  P (x t =  b\xt- \  — a). Strictly speaking, this is a first-order 

discrete time Markov model where the probability at time t  depends only on the 

states at time { t  — 1} [29]. In a Markov model, the state is directly visible to the 

observer; therefore, the state transition probabilities are the only parameters.

Figure 6.15: Schematic representation of the BN used to analyze MTC spoligotyping and 
patient data from NYC database. The top node is a class variable; the middle 
layer represents the Hidden Parent for the class {j/i, • • • , 2/4 3 }, and the bottom  
layer represents observed spoligotypes {au, • ■ • ,£ 4 3 }

In most of the real-life systems, the states are not visible and the only measur­

able, or observed, variables are the emitted characters. A Markov model where the 

state sequence is hidden and each state has a probability distribution over the pos­

sible output characters, or tokens, is called a hidden Markov model (HMM) [102]. 

HMMs originally emerged in the domain of speech recognition and now are also
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widely used in biological sequence analysis and image recognition. The transition 

probabilities in HMMs are strictly causal, i.e. they depend only on previous states

[29]. BNs are convenient tools for modeling these causal relationships.

We employed HMMs to determine whether introducing spacer interdependen­

cies can help identify the MTC strain families. Although we have reasons to believe 

that DVRs within the DR region are dependent on each other, currently there is no 

direct evidence on which DVRs are interdependent. Nevertheless, it is reasonable to 

assume that adjacent DVRs interact, which is readily naturally modeled by HMMs 

where Hidden Parents are represented as hidden states. Figure 6.15 shows the BN  

that models spoligotype pattern as the first-order HMM. The initial parameters 

of the hidden states were the SpolDB3-derived prototypes modified to account for 

the possible values taken by the preceding state. We assumed that the transition 

probability matrix P (x t =  o |x t_i =  b) was the same for all t, i.e. the probabilities 

are time-invariant. We conjectured that each succeeding state is more probable to 

emit a 0 if the preceding state had emitted a 0; thus, this allows us to integrate 

into the model the hypothesis asserting that multiple consecutive DVRs can be lost 

simultaneously .

Visual comparison of families identified by the MDAG and HMMs models 

using only the spoligotyping data permits to tentatively conclude that the HMMs 

are more suitable for clustering the MTC strain data. The families identified by 

the mixture of HMMs were almost identical to the families identified by the MDAG 

model among the spoligotyping and patient data. Some improvement in cluster 

quality was observed as well. Thus, the stable LAM3 family was more consistent 

with its prototype when the HMMs were utilized (Fig. 6.16). We intentionally 

delayed reporting the inconsistency in the content of the LAM3 family identified by 

the mixture of DAGs until this section.

The validation of the mixtures of HMMs was complicated for the same reason 

as the validation of the MDAG models, the high sensitivity of the algorithm to the 

permutation of the initial parameters. At this stage, we can suggest that the BNs 

should be used only when we are confident about the quality of the initial parame­

ters. We can use alternative to the BNT software, or design our own computational
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Figure 6.16: Logo of the LAM3 family as identified by the MDAG and HMM mixture 
models in the NYC data

tool to cluster MTC data using BNs.
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Conclusions and future work

The main contribution of this work consists in developing a new probabilistic mod­

eling approach to the identification of MTC strain families based on spoligotyping 

data. The previous applications of data mining techniques to spoligotyping data 

did not take into account the biological nature of spoligotypes. We incorporated 

a widely assumed hypothesis on the spoligotypes’s evolution into our model and 

showed that this allowed the identification of biologically meaningful families. TB  

epidemiologists, overwhelmed by the large volume and diversity of genotyping data, 

are sorely in need of efficient computational tools for processing the data. In col­

laboration with experts on TB molecular epidemiology, we initiated the project 

ultimately aimed at developing a robust computational system integrating hetero­

geneous data obtained by using different genetic markers. We concentrated on the 

analysis of spoligotypes because these data are fast and inexpensive to obtain, which 

is crucial for TB control programs, particularly in underdeveloped countries with 

high TB incidence rates.

Our results, based on the spoligotype analysis using mixture models, confirmed 

the reliability of the MTC strain families which had been previously defined empir­

ically. Our results also identified certain new families of potential epidemiological 

value. We give examples of how the identified families can be used to examine trends 

in patient demographic data. Joint mixture modeling experiments further demon­

strated the usefulness of supplementing genotype data with patient information. We 

also speculate that many epidemiologically meaningful spoligotyping families exist, 

which are yet to be recognized.

Several promising future directions are suggested. We explored our data in a 

graphical modeling framework. BNs were shown to identify the MTC strain families 

well, but were highly dependent on initial parameters. HMMs as an alternative 

method of modeling MTC strain data proved to be well suited for spoligotyping 

data. However, further work is required to develop validation techniques for MTC 

data clustering using graphical models.

98
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Sparse knowledge of the evolution of spoligotypes is a major limiting factor 

in the designing of efficient models. Extensive simulation experiments are required. 

Also, we anticipate that the rapid advances in molecular techniques will provide us 

with biological information essential to the design of robust algorithms for global TB  

data analysis. In addition to improving models for spoligotyping and patient data, 

future work will concentrate on developing probabilistic models for merging other 

types of genotyping data with traditional epidemiological data. The first step in this 

direction will be to incorporate into our models the MTC strain data generated using 

typing methods such as mycobacterial interspersed repetitive units [84, 132, 133] and 

IS6110-based  restriction fragment length polymorphism [146, 147].

Ultimately, our goal is to promote active and mutually beneficial collabo­

ration aimed towards control of infectious diseases, using molecular methods of 

analysis, among TB controllers and biological and computational scientists. To 

this end, we have made it possible for users to submit their data to SPOTCLUST  

(http://w ww .rpi.edu/~bennek/EpiR esearch). We hope that this will generate com­

ments and suggestions from scientists with spoligotyping data of their own.
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