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ABSTRACT

Tuberculosis (TB) remains one of the leading causes of mortality worldwide. It is

caused by Mycobacterium tuberculosis complex (MTBC). The development of the

DNA fingerprinting technologies in the past decade has enriched the information

available for scientific research and TB control. The genetic dissimilarities among

different strains of MTBC will result in different fingerprinting data. With this

information, TB patient isolates can be grouped into small clusters, which greatly

facilitates TB control and surveillance. Spacer Oligonucleotide Types (Spoligotypes)

and Mycobacterial Interspersed Repetitive Units - Variable Number Tandem Repeats

(MIRU-VNTR) are two of the popular biomarkers used for DNA fingerprinting

worldwide. MIRU-VNTR typing records the numbers of the tandem repetitive units

at several specific loci in MTBC genome, which are collectively referred as MIRU.

This thesis studies TB from two aspects: 1)micro-level exploring the evolution prop-

erties of MIRU based on our assumptions ; 2)macro-level, proposing mathematical

model to capture the transmission dynamics within a TB cluster.

In the past decade, MIRU is gaining popularity in TB research and control.

Compared to Spoligotypes, MIRU is relatively less studied. Understanding the char-

acteristics of MIRU is crucial to fully harness its power as a TB analysis tool. In

the first part of this thesis, we take advantage of the characteristics of Spoligotypes

to infer the mutation directions of MTBC and analyze the mutations in MIRU. A

Markov Chain of the repeat numbers of MIRU at each locus is built based the mu-

tations found in the data. We compute and compare the stationary distributions of

repeat numbers at different loci. An error analysis is done to investigate the errors

produced at each stage of our study: from inferring the probability transition matri-

ces of the Markov Chains to computing the corresponding stationary distributions.

We also study the distance between the current distribution of the repeat numbers

and the stationary ones. Finally, we analyze the rates of each locus reaching its

stationary distribution through theoretical computations and simulations.

In the second part, we study the transmission dynamics of TB disease. Based

xv



on the DNA fingerprints of the MTBC, TB patients can be clustered in to small

groups. This allows us to investigate the dynamics at the individual level. Since

immigrants make the majority of TB cases in the United States, we focus our anal-

ysis on immigrant TB patients. We propose a model to estimate the probability of

an immigrant entering the country latently infected with TB versus he/she being

infected after entry, given the entry and diagnosis time of the immigrant patients

within the cluster. The transmission routes among the patients increase exponen-

tially with the size of the cluster. The fact that individuals outside the cluster could

also infect someone within the cluster further complicates the dynamics. We use

Mean Field approximations to simplify the complicated transmission routs among

patients and the effects of the individuals outside the cluster. The performance of

the model is evaluated with Receiver Operating Characteristic (ROC) analysis on

simulated data. Finally, we apply our model to the patient data collected from New

York City.
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CHAPTER 1

Introduction

Tuberculosis (TB) is one of the most common infectious diseases worldwide. Each

year, it causes approximately 2 million deaths. It is the No. 2 cause of death due

to a single infectious disease (first is HIV) [1].

1.1 The Disease

TB has been a major health problem for globally for many years [1]. The

death rate has once reached 800 - 1000 per 100,000 population per year in various

cities in Europe in the 19th century [2]. In the early 20th century, the incidence

and fatality rate began to decline as the living standards, including medical care,

personal hygiene, nutrition, housing, and etc., improved. However, TB started to

reemerge in the early 1990s as the number of individuals with HIV/AIDS grew, and

started to be co-infected with TB [3]. The overall burden of TB continues to rise

each year as the world population rapidly grows. The WHO declared TB a global

health emergency in 1993 [1]. In 2012, 8.6 million people were infected with TB and

1.3 million died from it [1].

About one-third of the world population has been infected with TB, but not

yet become ill [4]. This is called the latent state. People with latent TB will not

transmit the disease. A small portion of people with latent TB infection will develop

active TB disease. People who have inferior immune systems, such as those with

HIV have much higher risk of developing active TB disease. When his/her latent

TB infection becomes active, the person will develop symptoms including cough,

fever, night sweats, weight loss, etc. More importantly, patients with active TB

disease can transmit the bacteria to other individuals [4].

1.2 Transmission

Tuberculosis is a contagious disease caused by Mycobacterium tuberculosis

complex (MTBC), a small, aerobic bacterium. It mainly attacks lungs, causing

1
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pulmonary tuberculosis. However, the TB bacteria can attack many other parts

of the body such as the kidney, spine and brain, causing extrapulmonary tuber-

culosis [1]. Although there are two forms of TB: pulmonary and extrapulmonary,

only the former is transmissible. When a person with active pulmonary TB coughs,

sneezes or speaks, the bacteria is spread into the air in the droplets. People nearby

may breathe in these bacteria and become infected [5].

Only a small portion of individuals that are infected develop progressive disease

immediately. Most people, after their initial exposure to the MTBC, will mount an

immune response which prevents the bacteria from proliferating. These individuals,

although carrying TB bacteria, will not show any symptoms nor will they become

infectious. This status is called latent TB infection [6]. However, it is possible that

the internal immune system fails to prevent the MTBC proliferation at a later point

of life. In this case, the TB bacteria will become active and the individual will

become sick with TB disease. Acquiring TB in this manner is called endogenous

reactivation. There is a 5 - 10% risk for endogenous reactivation to happen with

latent TB infection [5]. Individuals with latent infection could also be infected by

other active TB carriers again. We refer this type of transmission as exogenous

infection. The patient with latent TB infection could therefore develop active TB

disease through two ways: endogenous reactivation or exogenous infection [7]. The

dynamics of the transmission of TB is shown in Figure 1.1.

TB occurs in every part of the world. Currently, the largest number of new

cases arise in Asia, which accounts for 60% of new cases globally [1]. In 2009, 22

low and middle-income countries account for more than 80% of the active cases in

the world, with the five highest prevalence countries being India and China, South

Africa, Nigeria, and Indonesia [8]. In the past 5 decades, globalization contributes

significantly to the spread of TB. Immigration from countries with high TB incidence

to countries with low TB incidence is causing a major problem in TB spread [9]. In

the most developed countries, at least 50% of the TB cases are among foreign born

people [1]. In the United States, the TB incidence rate among foreign-born persons

in 2013 was approximately 13 times greater than the incidence rate among U.S.-born

persons, and the proportion of TB cases occurring in foreign-born persons continues
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Figure 1.1: The dynamics of the transmission of TB disease. The indi-
vidual without any TB infection is denoted as Susceptible.
Only a small fraction of people with the initial infection of
the MTBC will develop active TB disease. The remainder
will have the latent TB infection and there is a 5% risk to
progress to active TB through endogenous reactivation.

to increase, reaching 64.6% in 2013 [10]. There were 6,274 active TB cases of foreign-

born persons reported in 2012 in the U.S., among those 21% are from Mexico, 12%

from the Philippines and 9% from India [11]. As of 2012, among the foreign born

TB patients in the United States, the top 7 leading countries of birth are shown in

Figure 1.2 [11]. Since immigrants post the most significant burden to the TB, having

an effective system of TB surveillance among immigrants in the United States will

be an urgent task.

1.3 Genetic Diversity

As a development of biotechnology, DNA genotyping has became a crucial

tool in TB research. The MTBC has great genetic diversity. Strains of MTBC are

associated with different geographic regions. Research has shown that the different

strains of MTBC display distinct levels of virulence and drug resistance, which can be

translated into importance phenotypic differences [8,12]. For example, experiments

on guinea pigs have shown that the low-virulence strains from India are also less
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Figure 1.2: The top 7 leading countries of birth in the reported TB cases
in the United State 2012.

infectious [12].

The genetic diversity of MTBC not only provides indicative information for the

phenotype, but also offers evidence for transmission from person to person. Since

the mutation rate of the MTBC is slow relative to the transmission rate [13], it can

be assumed that the genetic information of the MTBC remain unchanged in the

event of transmission. For instance, for two TB patients, we could hypothesize that

one has transmitted the disease to the other. The fact that these two patients share

the same MTBC genotype supports the hypothesis, while transmission is impossible

if the two have different MTBC genotypes [14, 15]. Contact investigations are used

to further investigate if transmission has occurred between two patients. Deciding

when more extensive contact investigation are needed is a fundamental issue in TB

control.
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1.3.1 MTBC Genotyping

As discussed above, the discrimination between different genetically related

MTBC strains plays a crucial role in monitoring TB disease spread. In order to

identify different strains, we must access the genetic information of MTBC. The

fundamental way to do so is to sequence the whole genome [16]. The MTBC was se-

quenced in 1998 [17]. However, sequencing the whole genome is both labor intensive

and time consuming. Moreover, comparing the whole sequence data is computa-

tionally expensive. It is reasonable to only identify the genome loci which contain

rich discriminating information for the purpose of tracking disease spread. DNA

genotyping technology utilizes this idea to create DNA fingerprints. Here below,

three popular and efficient MTBC genotyping techniques are presented.

RFLP: Restriction Fragment Length Polymorphism (RFLP) is the standard ap-

proach for genotyping MTBC, recognized as the “gold standard” [16]. The genome

of MTBC often contains an insertion sequence named IS6110. RFLP analysis stud-

ies the distribution of the insertion sequence in different strains. The discrimination

of the strains of MTBC is allowed based on the distributions. However, the RFLP

analysis has some limitations. Despite having been standardized 10 years ago, the

RFLP profiles are still difficult to compare across laboratories, which restricted the

global application of the method [18]. Moreover, IS6110-based genotyping requires

subculturing the isolates for several weeks to obtain sufficient DNA [19].

Spoligotyping: Spoligotyping is a PCR-based technique. It explores the poly-

morphism in the direct-repeat(DR) region to distinguish between strains [20]. The

DR region contains 36-bp repeats which are separated by up to 43 non-repetitive 31-

41 bp length sequences called spacers [20,21]. Strains differ in terms of the presence

and absence of specific spacers. The spoligotype of a strain is represented as a 43-bit

long binary string, with a 0 representing absence and 1 representing presence of a

spacer. A key fact about the mutation of spoligotypes is that once a spacer is lost, it

is extremely unlikely to be regained. Therefore, it is hypothesized that spoligotypes

evolve by deletion of a single or multiple contiguous spacers, whereas insertion is

very unlikely [20–22]. Unfortunately, spoligotyping remains less discriminant than
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IS6100- RFLP when used alone [23], yet it can be improved when using together

with another method: MIRU-VNTR.

MIRU-VNTR: MIRU-VNTR typing is a variable number of tandem repeat anal-

ysis for bacterial typing scheme based on different classes of interspersed genetic el-

ements named mycobacterial interspersed repetitive units (MIRUs). MIRU is a 46-

100 bp DNA sequence dispersed within the intergenic regions of the MTBC genome

as tandem repeats. MIRU-VNTR typing is based on the number of repeats observed

at certain identified polymorphic loci. The degree of differentiation between strains

depends on the number of loci used [20, 24]. A system of 12 loci (MIRU locus 2, 4,

10, 16, 20, 23, 24, 26, 27, 31, 39, 40) is currently the most common standard and

has been integrated in TB control systems on a national scale [24].

We will use this 12 loci system in this thesis. Each MIRU result is reported as

12-character designations, each character corresponding to the number of repeats at

one of 12 MIRU loci in the order listed previously. Each MIRU locus has possible

repeat numbers from 0 to 14. We use the convention of representing the number

of repeats which are greater than 10 as letters. Therefore, 0-14 will be represented

as {0, 1, 2, ..., 9, a, b, c, d}. The exception is MIRU locus 4, which contains a variable

number of 77-bp repeated unit followed by an invariable number of 53-bp units.

In some isolates, the 53-bp units will be deleted. In order to differentiate the two

cases, letters z to r are used to represent repeat number 1 to 9 for the repeats with

the 53-bp units deleted respectively, e.g.,‘z’ is used for 1 repeat without the 53 -

bp units, ‘y’ for 2, ‘x’ for 3 and so forth [25]. There is a total of 9 possible extra

values represented by letters ‘z’ through ‘r’. An example of a MIRU profile could

be: 2x22323a2345.

MIRU-VNTR is easily reproducible and time efficient. Moreover, its stability

allows the tracking of outbreak episodes, laboratory cross-contamination, or relapses

[26]. When used in combination with spoligotypes, it provides a powerful method

for strain discrimination.
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1.4 Our Contributions

This thesis studies TB from two aspects. We first study the genome of the

MTBC isolates. We take advantage of the massive database of the DNA fingerprints

of MTBC to infer mutations among the isolates. Spoligotype is used to discover the

mutation directions. Based on the mutation directions, we collected information

on putative MIRU mutations. We find that how one repeat number changes in a

mutation actually depends on the value of the repeat number. For example, large

repeat numbers tend to decrease, while small values tend to increase in a mutation.

We also found that, for 6 out of 14 repeat numbers, the most frequent change in a

mutation is +1/-1, i.e. they either gain or lose a single repetitive unit. Contrary

to the previous studies, which assume MIRU evolves identically across different

loci [13], we find that the dynamics of the evolution for different loci are different.

For instance, in a mutation, repeat numbers will change to a few certain values

regardless what the initial values are. We call these “sticky” values. The “sticky”

values are different for different loci. A discrete time Markov chain model is built

to better understand the evolution if MIRU. The theoretical stationary distribution

of the repeat numbers computed based on the Markov Chain model are compared

with the sample distribution. This comparison gives an idea of the future variability

to be expected in MIRU evolution by locus. The evolution rate is studied under the

framework of Markov chain. We found that locus MIRU 24 is the most stable one

with slowest evolution rate, while MIRU 27 is the least stable one with highest rate.

After looking into the genome of MTBC, we take a step back and investigate

how TB spreads. Different than other mathematical models for TB epidemiology,

which study the transmission dynamics at the population level [27], we build a model

which studies the spread on an individual patient level. With the help of the DNA

fingerprinting technology, TB patients can be clustered into small groups with size of

1-10. We define a cluster to be a group in which patients have the same spoligotype

and RFLP. Doing this allows us to study TB spread in a more detailed manner.

Our model utilizes the information we observe from the immigrant TB patients to

estimate whether a specific patient in a cluster entered the country with or without

latent TB infection. This will help TB control and surveillance. We built the model
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in two steps: first: a detailed model with exact computation is built to allow us to

understand the dynamics; second: a mean-field style approximation method is used

to simplify the computation. In the simulation, the model is shown to have a good

performance in identifying whether a foreign born patient is latently infected at

entry or not. This model can help healthcare worker to identify the clusters where

transmissions are most likely to occur, so that they can prioritize the clusters and

allocate limited stuffs and resources for further investigation. The model is applied

on the patient data collected from New York City in 2001-2007. Results show that

the model successfully identified clusters with transmissions.

1.5 Organization

This thesis is organized in the following way. Chapter 2 covers our study on

the MIRU evolution. Chapter 3 lays out the theoretical background on our model

on the TB spread, including the exact model and the approximation model. The

characteristics of the patient data posed some limitations of parameters estimation.

This is discussed in Chapter 4. In Chapter 5, the TB spread model is tested on

simulated data. The model is trying to identify a patient entering the country

susceptible, indicating that the patient was infected by someone in the country,

versus the patient entering with latent infection. The performance is measured by

Receiver Operating Characteristic (ROC) curve. Also, the model is applied on the

data from New York City. Finally, chapter 6 concludes research findings and points

out the future research directions rooting from this study.



CHAPTER 2

MIRU Evolution

2.1 Introduction

In this study, we exploit massive databases of MTBC shared types character-

ized by both spoligotype and MIRU in order to examine how MIRU loci evolve.

Our strategy is to use spoligotypes to determine evolutionary direction of potential

evolutionary events. We look for isolate pairs with that have lost exactly one spacer

and that have changed one or zero MIRU loci. We examine a joint data set of 14,453

isolates gathered from United States Centers for Disease Control (CDC) [28] and

from Institute Pasteur SITVIT [29] to determine 41,604 of these potential pairs. The

data from CDC are collected by the TB-Insight project (http://tbinsight.cs.rpi.edu)

and it appeared in a previous study [28]. Then we performed two separate studies

of the result. The first analysis examines the frequency and mutation variability in

the number of repeats and how mutation depends on the number of repeats. The

results suggest that the probability of mutation varies by the number of repeats.

The second analysis examines the frequency and variability in mutation by loci.

These results show that the variability of repeats differs by loci. In the second

analysis the mutations in the repeat numbers of different MIRU loci are analyzed

using the framework of discrete time Markov Chains. The theoretical stationary

distribution of the repeat numbers computed based on the Markov Chain model are

compared with the sample distribution to give an idea of the future variability in

MIRU evolution by locus.

2.2 Method

We propose a model to utilize the information from both MIRU-VNTR typing

and spoligotyping to infer MIRU mutations. Each MTBC isolate is genotyped by

spoligotye by 43 binary digits capturing the absence and presence of spacers and one

12 loci MIRU profile, which is a 12 digit character string. We consider all possible

pairs of isolates consisting of a parent and child isolate which satisfy the following

9
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two rules.

As discussed above, given a mutation happened, the DR region of MTBC

is likely to gain a spacer, while losing one is nearly impossible. This means only

mutations from 1 to 0 are possible among spoligotypes. This fact is used to discover

the mutational directions among different MTBC isolates. A mutation between two

isolates is defined when the following two rules are satisfied.

Rule 1. The parent isolate and child isolate have 42 identical spacers and one

spacer that is lost, i.e. the parent has a 1 for that spacer and the child has a 0 in

the changed position of the shared spoligotype.

Rule 2. The parent and child have 11 identical MIRU locus alleles and on one locus

changes by at least one spacer. The evolutionary direction is infered to be from the

parent to the child as determined by the spoligotype rule.

Figure 2.1 shows an example of one incidence of the mutation.

Figure 2.1: An example of one mutation. Where the 39th spoligotype
(in circle) goes from 1 to 0 and the 9th MIRU goes from 3
to 4 (in circle). Note that we only allow one change in both
numbers

Further understanding can be gained by examining the distribution of child

values per each locus. The change from parent repeat number i to child number j

were calculated. Parent-child events were collected from the data set for each locus.

The numbers of transitions from i to j repeats were counted for every i, j ∈ S. For

each MIRU locus k, a matrix M (k) is built based on the counts.
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(2.1)

where each entry u
(k)
ij represents the number of counts that i turned into j repeats at

locus k. For example, u
(4)
23 = 130 means that there are 130 times of repeat number 2

turning into 3 at MIRU locus 4. We will refer M (k) as the transition counts matrix

for MIRU locus k.

2.2.1 Markov Chains

The model in this study is based on a discrete time Markov Chain, which is

a memoryless stochastic process [30]. We will first introduce some of the important

properties of Markov Chain here.

Definition: A stochastic process is the evolution of some random variables over

time. Consider a sequence of random variables Xn, n = 0, 1, 2, ..., with n represent-

ing the time, which is called the epoch of the process. Xn takes values in a finite

set S = {0, 1, 2, ..., N}, which is called the states of the process. The transition

probability is the conditional probability of Xn = in given the first n− 1 epochs.

P (Xn = in|X0 = i0, X1 = i1, ..., Xn−1 = in−1) (2.2)

A Markov Chain is a stochastic process with the Markov property, which is that the

distribution of Xn only depends on the previous epoch.

P (Xn = in|X0 = i0, X1 = i1, ..., Xn−1 = in−1) = P (Xn = in|Xn−1 = in−1) (2.3)
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This is also called the memoryless property and the expression on the right hand side

is called a transition probability. A time-homogeneous Markov Chain is a process

such that the transition probability is constant at different epochs.

P (Xn = j|Xn−1 = i) = p(i, j) (2.4)

We will assume time-homogeneity in our MIRU model. A transition probability ma-

trix is a (N+1)×(N+1) matrix P , with entries equal to the transition probabilities,

i.e. pij = p(Xn = j|Xn−1 = i).

Communication Class: The initial distribution of the states, q0, is a vector

with entries q0(i) = P (X0 = i). The distribution of states at the next epoch

will be q1 = P ′q0, where P ′ is the transpose of the transition probability matrix

P . Moreover, the probability distribution for the state at the nth epoch will be

qn = P ′nq0.

Two states i and j are said to communicate with each other, if there exist

m,n > 0, such that pmij > 0 and pnji > 0, where pni,j is the (i, j) entry of P n. That is

equivalent saying if i and j communicate, there is a path to reach j starting from i

and vice versa.

A communication class is a set of states such that any pair of the states

communicate with each other. A Markov Chain with only one communication class

is called irreducible. A Markov Chain could have multiple communication classes.

There are two types of communication classes: recurrent and transient. If the chain

starts from a recurrent class, then it stays in this class forever. On the other hand,

if the chain starts in the transient class, it will have probability one to leave it in

some future epoch.

Periodicity: The period of a state i of a Markov chain is defined as the following,

d = gcd {n : Xn = i|X0 = i} (2.5)

where gcd stands for greatest common divisor. A state with period of 1 is said to
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be aperiodic. A communication class is aperiodic if all of its states are aperiodic.

A communication class only needs one aperiodic state to imply all the states are

aperiodic [30].

Long-Range Behavior: Let P be the transition probability matrix of an irre-

ducible Markov Chain or recurrent communication class and q0 be its initial distri-

bution. We have the following

qn = P ′nq0 (2.6)

If the Markov Chain (recurrent class) is aperiodic and irreducible, then there exists

a unique probability distribution such that

π = lim
n→∞

qn = lim
n→∞

P ′nq0 (2.7)

Such π is called the stationary distribution of the Markov Chain (recurrent class).

There are two important properties about the transition probability matrix P [31],

Lemma 1. Provided the Markov Chain is irreducible and aperiodic, the correspond-

ing probability transition matrix will have the following properties:

• Exactly one of the eigenvalues of P has the value of 1.

• All the eigenvalues of P have absolute values less than 1.

MIRU Markov Chain Model: Recall that we have the transition counts matrix

for MIRU locus k, M (k), which is defined as equation (2.1). The standard procedure

for fitting a Markov chain model to a data set is to estimate the probability transition

matrix, P̂ (k) from the transition count matrix, i.e. M (k). Let p̂
(k)
ij be the entry at row

i and column j of P̂ (k). Viewing each row of M (k) as a sample of the multinomial

distribution with parameters [p
(k)
i0 , p

(k)
i1 , ..., p

(k)
iN ], p̂

(k)
ij will be an estimation for p

(k)
ij

and the corresponding standard error will be σ̂
(k)
ij . Here we use Laplace smoothing

on the transition count matrix, which is equivalent to add 1 to each u
(k)
ij [32]. P̂ (k)

and σ̂
(k)
ij are defined as follows [33].
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p̂
(k)
ij =

u
(k)
ij + 1∑

j∈S u
(k)
ij +N + 1

(2.8)

σ̂
(k)
ij =

√√√√ p̂
(k)
ij (1− p̂(k)

ij )∑
j∈S u

(k)
ij +N

(2.9)

where N + 1 is the dimension of the state space is (e.g. the possible repeat numbers

are 0, 1, 2, ..., N), therefore it appears in the denominator of equation (2.8). The

insignificant estimations, which means p̂
(k)
ij < 2σ̂

(k)
ij , are set to 0.

Let q
(k)
m = [q

(k)
1,m, q

(k)
2,m, ..., q

(k)
n,m]′ be the column vector representing the distri-

bution of the repeat numbers at the mth generation at locus k. The stationary

distributions of the communication classes of every MIRU locus can be obtained by

the following equation [30]:

π(k) = 1(I − P̂ (k) +ONE)−1 (2.10)

where 1 is a vector of ones, I is the identity matrix, P̂ (k) is the transition probability

matrix of the major communication class and ONE is a matrix with all ones.

Error Analysis: Note that we estimated the transition probability matrix P (k)

based on the transition counts M (k). The error from this estimation is propagated

to the computation of the stationary distribution π(k). A Monte Carlo simulation

scheme is used to evaluate this error. We are going to use Dirichlet distribution

to sample. It is a distribution on multivariate random variable X = [x1, x2, ..., xn],

xi > 0 and
∑n

i=1 xi = 1 and parameter α = [α1, α2, ..., αn], αi > 0 . The probability

density function is

Dir(X|α) =
1

B(α)

n∏
i=1

xαi−1
i (2.11)

B(α) =

∏n
i=1 Γ(αi)

Γ(
∑n

i=1 αi)

where Γ(x) is the gamma function, Γ(x) =
∫∞

0
tx−1e−tdt.

For each i ∈ S, a row vector p̃
(k)
i = [p̃

(k)
i0 , p̃

(k)
i1 , ..., p̃

(k)
iN ] is simulated with the
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Dirichlet distribution Dir(X|u(k)
i0 , u

(k)
i1 , ..., u

(k)
iN ), where X = [x0, x1, ..., xN ] is a N+1-

dimensional random variable. For each sample from the Dirichlet distribution p̃
(k)
i =

X. There are a few reasons why we use the Dirichlet distribution for sampling,

• A Dirichlet random variable X will be a categorical probability. This means

that 0 ≤ xi ≤ 1 for i = 1, 2, ..., d and
d∑
i=1

xi = 1, where xi is the ith element of

the d-dimensional random variable X.

• Let p̃
(k)
i = [p̃

(k)
i0 , p̃

(k)
i1 , ..., p̃

(k)
iN ] be a sample from Dir(X|u(k)

i0 , u
(k)
i1 , ..., u

(k)
iN ). The

expectation of p̃
(k)
ij will match that of p̂

(k)
ij and the standard deviation will

match approximately, as shown in the following

E[p̃
(k)
ij ] =

u
(k)
ij∑

j∈S u
(k)
ij

(2.12)

√
V ar[p̃

(k)
ij ] =

√√√√ p̂
(k)
ij (1− p̂(k)

ij )∑
j∈S u

(k)
ij + 1

(2.13)

Note that the standard deviation of the simulated p̃
(k)
ij and the standard error of the

estimated p̂
(k)
ij (the results of equation (2.9) and (2.13)) are different. However, due

to the large values of
∑

j∈S n
(k)
ij , the differences are negligible.

The matrix P̃ (k) with entries p̃
(k)
ij will have the expectation of P̂ (k). The stan-

dard deviations of each entry of P̃
(k)
ij is approximately equal to the standard error

of the MLE estimation. For each P̂ (k), P̃ (k) is simulated 10000 times and a station-

ary distribution π̃(k) is computed using the same equation (2.10). The confidence

intervals of π(k) are constructed based on the standard deviations of the computed

π̃(k).

Forward Simulation: Given the sample distribution of the repeat number of a

MIRU locus k is q
(k)
0 , as discussed in the previous section, the distribution of the nth

generation will be q
(k)
n = P̂ ′nq

(k)
0 . q

(k)
n → π(k) as n→∞, where π(k) is the stationary

distribution computed in equation (2.10). The rates of convergence indicate how fast
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each loci approaches to the stationary state. Let P̂ (k) be the maximum likelihood

estimation of the transition probability matrix of an aperiodic, irreducible Markov

chain. Suppose P̂ ′(k) has K eigenvalues, |λ1| > |λ2| ≥ ... ≥ |λK |, and by Lemma 1,

λ1 = 1. For any given initial distribution q
(k)
0 , we have the following,

q(k)
n = P̂ ′(k)nq

(k)
0

= λn1c1v1 + λn2c2v2 + ...+ λnKcKvK

≈ λn1c1v1 + λn2c2v2 + o(λn2c2v2) (2.14)

where vi is the eigenvector of P̂ ′(k) corresponding to λi and ||vi|| = 1. Note that

λ1 = 1 and |λ2| < 1, so when n → ∞, q
(k)
n → c1v1 = π(k) and λn2c2v2 → 0. Let

r = −log(|λ2|) , then |λ2|n = e−rn. This is an exponential decay function in terms

of the number of generation n. Therefore, the rates of convergence can be measured

by −log(|λ2|). If the distance between q
(k)
n and π(k) is measured by the 2-norm,

‖q(k)
n - π(k)‖ we have the following,

‖q(k)
n − π(k)‖ = ‖λn2c2v2 + o(λn2c2v2)‖

(2.15)

Let x = [x1, x2, ..., xn] be a vector with n entries. The 2-norm of x is defined as

follows,

||x|| =

√√√√ n∑
i=1

(xi)2 (2.16)

We could compute the number of steps, starting from the initial distribution q
(k)
0 ,

needed for the distance to decrease to the magnitude of certain threshold value ε.

This can be done by simply solving |λn2c2| ≤ ε. We have,

n ≥ ln(ε)− ln(|c2|)
ln(|λ2|)

(2.17)
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where n is the minimum of steps for the distance between the current and stationary

distributions to drop within the magnitude of ε.

However, the 2-norm (‖ · ‖) is not the standard way to measure the distance

between distributions. Instead, it is usually measured by Kullback-Leibler (KL)

divergence [34]. The KL-distance between q
(k)
n and π(k) is defined as the following,

D(q(k)
n |π(k)) =

d∑
i=1

ln

(
ϕ

(k)
n,i

ψ
(k)
i

)
ϕ

(k)
n,i (2.18)

where ϕ
(k)
n,i , ψ

(k)
i are the ith elements of q

(k)
n and π(k) respectively and d is the

dimension of two distributions. Using the results from equation (2.14) and taking

the first two terms of the Taylor Expansion of the logarithm, we can put D(q
(k)
n |π(k))

in the following form:

D(q(k)
n |π(k)) =

d∑
i=1

ln

(
ψ

(k)
i + λn2c2ω

i
2 + o(λ2

2)

ψ
(k)
i

)
ϕ

(k)
n,i

≈
d∑
i=1

ln

(
1 +

λn2c2ω
i
2

ψ
(k)
i

)
ψ

(k)
i

≈
d∑
i=1

λn2c2ω
i
2

ψ
(k)
i

− 1

2

(
λn2c2ω

i
2

ψ
(k)
i

)2
ψ(k)

i

= λn2c2

d∑
i=1

ωi2 + o(λn2 ) (2.19)

where ωi2 is the ith element of v2. We can compute the number of steps for

D(q
(k)
n |π(k)) to decrease to within the magnitude of ε by solving |λn2c2

d∑
i=1

ωi2| ≤ ε.

This will give us

n ≥
ln(ε)− ln(|c2|)− ln(|

d∑
i=1

ωi2|)

ln(|λ2|)
(2.20)

In addition to these analytically computed step numbers n, we will also per-

form the forward simulation. The values D(q
(k)
n |π(k)) will converge to 0 as q

(k)
n →

π(k). The values of D(q
(k)
n |π(k)) are computed for every n. We count the number of
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steps, n̂, it takes for D(q
(k)
n |π(k)) drop below ε (if λ2 > 0).

2.3 Results

To infer MIRU evolution tendencies, we analyzed a collection of 14,453 isolates

geneotyped by spoligotype and MIRU provided by the United States Centers for

Disease Control from a collection of TB isolates from the patients in the United

States collected from 2004 to 2007 [35] and by Institute Pasteur de Guadeloupe

from the SITVITWEB collection [36]. A total of 41,604 pairs of parent-child was

found based on the two rules we defined, Rules (1) and (2).

2.3.1 Analysis by Repeat Number

The distribution of the repeat numbers in our data set is shown in Figure 2.2.

Repeat number 1-7 appear most frequently. These 7 numbers take 99.27% of the

total numbers. The mode is 2, which accounts for 35.89% of the total number of

appearances.

Figure 2.2: The distribution of the appearance of repeat numbers in the
data. Repeat 1- 7 are the most frequent ones, while 2 is the
mode. 1-7 make 99.27% of the total appearances, while 2
makes up 35.89%.

Figure 2.3 (top) shows the distribution of the repeat numbers observed in the
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parents. The majority of the repeat numbers are from 1,2,3,4,5,6,7 with the mode at

2. The distribution of the appearance of the repeat numbers in the parents closely

corresponds to the distributions of repeat numbers observed in the data set since

only one locus changes from parent to child per mutation event and all loci of the

parent are counted. The distribution of repeat numbers of parent alleles that are

inferred to mutate is quite different. Figure 2.3 (bottom) examines the probability

that a repeat number changes from parent to child in one of the inferred mutation

events. Repeat numbers 1 through 6 are observed to mutate less than 17% of the

time. Repeat 7 changes 35.19%, repeat ‘a’ changes 40% and 0,8,9,b,c,d all have

changing percentage higher than 74%. This result agrees with prior study which

observed that large repeat numbers have higher changing probability [13]. Note that

in our finding, repeat number 0 is an exception. Although it is the smallest repeat

number, it has a 89.54% chance to change in the event of mutation.

We also observed that in a mutation, the distribution of the child’s repeat

number depends on the parents’. Figure 2.4 shows the distribution of child’s repeat

numbers for each of the possible parent repeat numbers given that a change of

at least one occurs. We exclude the mutations when the repeat number from 0-d

change to ’z’-’r’, since these cases are rare: given the repeat number changes, 1.22%

of 0 and 1.11% of 9 change to ’z’-’r’, while others have a chance less than 1%. For

repeat number 1,2,3,4,5 and 6, the most frequent change is +1/-1, i.e. 3 changes to

2 or 4. Repeat numbers 0-3 are more likely to increase than decrease, while 4 and

greater tend to decrease. The probability to increase for repeat 3,4 and 5 are: 3:

54.88%, 4: 38.85%, 5: 26.72%. The complete increase/decrease probabilities for all

the repeat numbers of the parents are shown in Table 2.1.

Based on our findings, in the event of mutation, small repeat numbers have a

higher probability to increase while larger repeat numbers tends to decrease. This

contradicts the prior study which assumes increase/decrease probabilities are equally

likely for all repeat numbers [13].
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Figure 2.3: The top plot shows the distribution of the repeat number
across all loci in the parents. The bottom plot shows the
frequency with which a given repeat number change values
from parent to child.

2.3.2 Analysis by Locus

In this section we investigate the difference in inferred MIRU mutations by

locus. For each locus, we estimate the probability that the child isolate will have a

change in that locus. As shown in Figure 2.5, MIRU 24 seems to be the most stable

locus. In total of 41,604 mutations, only 0.58% of the repeat numbers at MIRU 24

changed their values. Loci 2, 20, 27 and 39 also have low change probability (less

than 4.7%). Loci r, 4,16,23 and 31 have moderate rates of changes. (between 9.05%

and 7.65%). On the other hand, MIRU 10, 26, 40 have a relatively high probability

of changing repeat numbers (between 12.90% and 16.70%).

We collected the transition count matrix M (k) from the 41,406 pairs of parent-

child data. Let P̂ (k) be the matrix resulting from normalizing the rows of M (k) with
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Figure 2.4: For each repeat number in the parents, given it changes in
a mutation, the distribution of the child’s repeat number.
The mutations from 0-‘d’ to ‘z’-‘r’ are rare (around 1%) and
excluded.

Laplace smoothing [32], i.e. p̂
(k)
ij =

u
(k)
ij + 1∑N

j=0 u
(k)
ij +N + 1

, where u
(k)
ij is the number of

counts of repeat number i changing to j at locus k. For example, an entry of P̂ (24):

p
(4)
23 = 0.041 means that at MIRU 4, given the current repeat number is 2, there

is a 4.1% chance it will turn into 3 in one mutation. p̂
(k)
ij is an estimation to the

true transition probability based on the data. To avoid noise, we want to only work

with the significant estimations. With the standard deviation of p̂
(k)
ij , σ̂

(k)
ij , defined

as in equation (2.9), we define an estimation of p̂
(k)
ij to be insignificant if p̂

(k)
ij < 2σ̂

(k)
ij .

These insignificant estimations are set to 0. The matrix P̂ (k) is then used to define

a discrete-time Markov chain {Xn}n=1,2,..., where X
(k)
n models the kth locus at the
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Table 2.1: In the event of a mutation, the increase/decrease probabilities
for each repeat number of the parent. Parents with small re-
peat number (0-3) have a higher probability to increase while
parents with larger repeat number (4 or greater) tend to de-
crease.

Repeat No. Decrease Increase Repeat No. Decrease Increase
0 0.0000 1.0000 7 0.9479 0.0521
1 0.0027 0.9973 8 0.9717 0.0283
2 0.1322 0.8678 9 0.9813 0.0187
3 0.4512 0.5488 10 (a) 0.9833 0.0167
4 0.6115 0.3885 11 (b) 1.0000 0.0000
5 0.7328 0.2672 12 (c) 1.0000 0.0000
6 0.8853 0.1147 13 (d) 1.0000 0.0000

Figure 2.5: For each locus, the probability that the child’s repeat num-
bers are different from the ones of the parent. MIRU 24 is
the most stable locus as only 0.58% of repeat numbers change
from parent to child. MIRU 40 is the least stable one, 16.7%
of repeat numbers change in a mutation.

nth generation. We define the Markov chain dynamics so that the probability of

Xn+1 = j given Xn = i is p̂
(k)
ij . The P̂ (k) is called the transition probability matrix

of the Markov Chain {Xn}n=1,2,....

The heat-maps of transition matrices of each locus are shown in Figure 2.6

for all loci except MIRU 4 which is show in Figure 2.7. The heat-maps allows one

to quickly visually assess differences between loci. Black indicates probabilities of
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Figure 2.6: The heatmaps of the 11 transition probability matrices by
loci (locus 4 is shown in a separate figure), where darker
color means higher probabilities. Note that row number is
the originating state and column number is the destination
state under a mutation.

1 and white indicates probabilities of 0. The rows are the parent repeat numbers

and the columns are the child repeat numbers. Dark values on the diagonal indicate

repeats that tend to be stay at their current values; entries below the diagonal
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Figure 2.7: The heatmap of the transition probability matrix for MIRU
locus 4. The lines separate the normal repeated units (0 - d)
and the ones with 53-bp deleted (z - r).

indicate decreases and entries above the diagonal indicate increases. Entries one

off the diagonal indicate values that change by one. Entries far from the diagonal

indicate large changes. We offer several observations.

1. The heat-maps of MIRU 20 and 24 indicate that the observed values and

transitions are confined to 0 to 4 repeats. Based on the inferred distribution,

observed repeat values will remain small and mutations to and observations

of large values (greater than 4) are anticipated to be very rare in the future

based on our results. Also from our prior analysis in Figure 4, MIRU 20 and

24 are very stable in the sense that they are unlikely to change and when they

do change they are likely remain at small numbers of repeats.

2. MIRU locus 24 is known to correspond to the TbD1 deletion. TbD1 is a

DNA region that is present in ancestral strains (Indo-Oceanic, M. bovis and

M. Africanum) but absent in modern strains (Euro-American, East Asian, and

East African Indian) [37]. The modern strains will have less than 2 repeats
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at MIRU 24 whereas ancestral strains more than 2. Although it is not visible

from the heatmap, there are 98 pairs of parent-child relations, where MIRU

24 changes from 1 to 2, indicating a mutation from Modern to Ancestral

strains, which is not expected. The lineage of both the parents and children

are the same in these 98 mutations. Among the pairs, 1 is East-Asian, 3 are

Mycobacterium- africanum, 6 are Mycobacterium-bovis, 7 are Euro-American

and 81 are Indo-Oceanic.

3. MIRU 4, 10, 23, and 40 show a more complex structure with many off diagonal

probabilities indicating a large number of mutations of different sizes and

directions to a variety of children repeat values.

4. MIRU 4 extra repeats ‘z’ - ‘r’. Recall that these characters represent the

repetitive units without the 53-bp block. Our study shows that the mutations

from 0 - ‘d’ to ‘z’-‘r’ are rare. For repeats from 0 - ‘d’, the percentages of

mutations to ‘z’-‘r’ are the following, 9: 4.05%, 0: 3.42%, 7: 2.88%, all others

have the percentages less than 1.5%. This results correspond to the heatmap

shown in Figure 2.7, in which the upper right block is near empty. On the

other hand, for the parents with repeat number ‘z’ - ‘r’, they will most likely

change to values in 0 - ‘d’. The percentages of values in ‘z’ - ‘r’ changing to

0 - ‘d’ are the following: ‘x’: 63.85%, ‘y’: 89.48%, ‘z’: 89.62%, all others have

the percentages greater than 90%. This corresponds to the lower left block in

Figure 2.7.

5. Most of the heatmaps display a common pattern: 1) they have darker diagonal

entries, which represents the repeat number stays the same in a mutation; 2)

they have one or more darker columns, which indicates some values are more

common than others in the children. We name these values as “sticky values”

and they will be discussed in the following section.

Sticky Values: Repeat numbers are more likely to mutate to certain values than

others. We can see this in Figure 2.6. Colored columns indicates that certain child

repeat numbers occur more frequently from a variety of values. For example, at



26

locus 27, if a repeat number is going to mutate, it is most likely for it to change to

3 regardless of the parent repeat value. This phenomenon is also observed for one

or more repeat values at other loci. The values which other repeat numbers tend to

mutate to are referred as “sticky” values in this study. We measure the stickyness of

each repeat number by summing up the columns of the count matrix for each MIRU

locus, N (k), while excluding the diagonal entries. The values are then normalized

by sum of all these sums. For example the “stickyness” of each repeat number for

MIRU locus 27 will be computed as the following:

1. Compute the columns sums of N (27) without the diagonal entries: Sumi =∑
j 6=iN

(27)
ij

2. Normalize the values by
∑N

i=0 Sumi: Stickynessi = Sumi∑N
i=0 Sumi

The results are shown in Figure 2.8. MIRU 2 ,20 and 24 have a sticky value

at 2; MIRU 16, 27, 31, 40 at 3; MIRU 10 at 4, MIRU 26 at 5. Moreover, three loci

have two sticky values: MIRU 4(2,5), MIRU 23(5,6), MIRU 39(2,3)

Stationary Distribution For each MIRU locus, let Xn be the repeat number at

the nth generation. There are a subset of the repeat numbers S, such that for any

pair of i, j ∈ S, p(Xn+a = i|Xn = j) > 0 and p(Xn+b = j|Xn = i) > 0. This subset

is called a communication class. We refer the largest communication class as the

major communication class of a MIRU locus.

π(k) of the major communication class of each MIRU loci is computed in

equation (2.10). Let q
(k)
0 be the sample distribution of the major communication

class. For example, given a major communication class at MIRU locus k with states

(repeat numbers) 0, 1, 2, 4, its sample distribution is a vector with 4 entries and

each entry is computed as
ri

r0 + r1 + r2 + r4

(i = 0, 1, 2, 4) where ri is the total

appearances of repeat number i at locus k. The stationary distributions (dashed

lines) together with the sample distribution, q
(k)
0 for the major communication class

(solid lines) are shown in Figures 2.9 and 2.10. Repeat numbers ‘b’,‘c’ and ‘d’ are

not in the major communication class for all the loci except MIRU 4 and they are

not plotted in Figure 2.9. Also, repeat numbers ‘r’,‘s’ and‘’t’ are not in the major
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Figure 2.8: The stickyness of each repeat number measured summing up
the columns of the transition count matrix while excluding
the diagonal entries. The values are then normalized by the
sum of these values. MIRU 2 ,20 and 24 have a sticky value
at 2; MIRU 16, 27, 31, 40 at 3; MIRU 10 at 4; MIRU 26 at
5. Moreover, three loci have two sticky values: MIRU 4(2,5),
MIRU 23(5,6), MIRU 39(2,3).
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Figure 2.9: The computed theoretical stationary distribution (red
dashed) and the sample distribution (solid blue) of the major
class of each MIRU locus. All loci except 4 are shown in this
figure.

Figure 2.10: The computed theoretical stationary distribution and sam-
ple distribution of the major class of MIRU locus 4.

communication class of MIRU 4 and they thus are removed in Figure 2.10. The error

of the π(k) is studied by the Monte Carlo method. For each MIRU locus, P̃ (k) was
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simulated 10000 times with the Dirichlet distribution, as defined in equation (2.12),

and the corresponding stationary distribution, π̃(k) was computed. The standard

deviation of π̃(k)’s entries are smaller than 0.016 for all loci except MIRU locus 24,

whose maximum value is 0.0398, still modest compared to the its values (0.3223).

The magnitude of the error in estimating P (k) is small, due to the large values of the

transition counts. This Monte Carlo study shows that the error propagated from

P̂ (k) to its stationary distribution π(k) remain modest and our results for π(k) are

statistically significant.

The distance between the sample and stationary distribution is measured by

the Kullback-Leibler divergence, which is defined as in equation (2.18). It is also

known as relative entropy [38]. The values of the KL divergence of different loci are

sorted in ascending order in table (2.2). Small values, such as MIRU 24: 0.0488,

indicates the sample distribution is close to the stationary distribution, thus large

future change in the distribution of the repeat number is not expected. Large KL

divergence, such as MIRU 26: 0.1755, means the current sample distribution has not

yet approached the stationary distribution, therefore, we will expect the distribution

of repeat number to vary in the future.

Table 2.2: The Kullback-Leibler divergence between the sample and sta-
tionary distribution for each locus. The values are sorted from
small to large

MIRU locus 24 40 39 20 10 2
KL divergence 0.0488 0.0555 0.0628 0.0690 0.0822 0.0951
MIRU locus 4 16 31 23 27 26
KL divergence 0.1014 0.1171 0.1220 0.1393 0.1449 0.1755

Rate of convergence In order to investigate convergence rate of the Markov

chains, the distribution of the repeat numbers at the nth generation, q
(k)
n , were

computed. The values of Kullback-Leibler (KL) divergence between the sample

distributions of the repeat numbers of MIRU loci and the stationary ones for each

generation, D(q
(k)
n |π(k)), are plotted in Figure 2.11. Since the KL divergence of
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Figure 2.11: The Kullback-Leibler divergence of each MIRU loci except
MIRU 24, D(qk,n|πk), plotted against number of steps.

Figure 2.12: The Kullback-Leibler divergence of MIRU 24, D(p24,n|πP24),
plotted against number of steps.
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Figure 2.13: Number of steps needed for the Kullback-Leibler divergence
D(qk,n|πk) of each locus to approach convergence threshold
ε = 1e−6, starting from sample distribution. MIRU locus 24
is excluded from this plot since it has a value of 582.

MIRU 24 decays at a rate that is significant slower than the rest of the loci, it is

plotted in the separate Figure 2.12.

We chose a threshold value of ε = 1e−6 and count the number of genera-

tions for the KL divergence between q
(k)
n and π(k) to drop below the threshold, i.e.

{n|D(q
(k)
n |π(k)) ≤ ε}. The results are plotted in Figure 2.13. MIRU 24 has the

slowest convergence rate, it takes 582 steps for its KL-divergence to drop below the

threshold value of 1e−6.

The different transition probability matrices for loci will give them different

convergence rates. This rate is measure by −log(|λ2|), where λ2 is the second largest

eigenvalue of the transition probability matrix. The convergence rate for each MIRU

locus is shown in Figure 2.14.

The theoretical number of steps for the 2 norm of the sample and stationary

distribution of each MIRU locus is computed as in equation 2.17. The results are

shown in Figure 2.15. The theoretical number of steps for the Kullback-Leibler

distance of sample and stationary distribution of each MIRU locus is computed as

in equation 2.20. The results are shown in Figure 2.16. Figure 2.15 and 2.16 are

consistent with the results from the actual forward simulation (Figure 2.13).
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Figure 2.14: Let λ2 be the second largest eigenvalue of the transition
probability matrix for each MIRU locus. − ln(|λ2|) can be
used to measure the convergence rate to the stationary dis-
tribution. The values of − ln(|λ2|) of each locus are plotted.
As shown in the figure, locus 24 has smallest value 0.0091,
while locus 27 has the greatest rate of 0.5626.

2.4 Conclusion

In this chapter, we analyzed the evolution of the MTBC from the lens of

Spoligotypes and MIRU profiles. Under the rules we defined, 41,604 mutations are

found among 14,453 MTBC isolates, collected by CDC and Institut Pasteur. For

different MIRU loci, the transition probability of repeat numbers are computed.

The heat-maps of the transition probability matrices of the MIRU loci indicate that

certain repeat numbers are more popular than others in the event of a mutation. For

example, when a repeat number changes in a mutation, it is more likely to change

to certain values than others, i.e. 2 in locus 20 and 3 in locus 27. We also find

that the small repeat numbers have tendencies to increase while the big ones tend

to decrease in a mutation. We also found that in the event where repeat numbers

change in a mutation, it is more likely for them to change by small values then by

large values

We develop a Markov chain model for the MIRU repeat numbers based on

the transition probability matrices. The stationary distributions of these Markov

chains are computed. By comparing the sample distributions and stationary ones

of different MIRU loci, we discovered that the sample distribution of the repeat
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Figure 2.15: Theoretically computed number of steps needed for ‖qk,n −
πk‖ to drop within the magnitude of ε = 1e−6. The number of
steps n is computed based on equation (2.17). MIRU locus
24 is excluded from this plot and it has a value of 1,293.

number of some MIRU loci are close to their stationary ones, which is measured by

various methods including Kullback-Leibler (KL) divergence. For these loci, we do

not expect large changes in the distributions of the repeat numbers to change in the

future. On the other hand, for certain loci like 26, 27 and 4, the two distributions

of their repeat numbers are different from each other base on the measurement with

the KL divergence. For these loci, we expect the distribution to converge to the

stationary ones.

By the analysis of the forward simulation, we investigate the convergence rate

of repeat number distribution of each loci. As cited before, MIRU locus 24 cor-

responds to the TbD1 deletion, which is used as marker to differentiate ancestral

versus modern strains. Our research shows the evidence of MTBC mutations from

Modern to Ancestral strains, which is not expected. Whether this could affects the

potential to use locus 24 as marker for differentiate modern and ancestral strains

requires further study.

We have been investigating TB at a micro-level: studying the evolution of

MTBC, the causative agent of TB. Next, we will take a step back to study the

problem at a macro-level. We will spend the next few chapters discussing the prob-

abilistic modeling of TB disease spread.
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Figure 2.16: Theoretically computed number of steps needed for the
Kullback-Leibler divergence D(q

(k)
n |πk) to drop within the

magnitude of ε = 1e−6. The number of steps n̂ is computed
base on equation (2.20). MIRU locus 24 is excluded from
this plot and it has a value of 1,246.



CHAPTER 3

TB Spread Modeling

3.1 Introduction

To control TB, we must understand the dynamics of its transmission. Various

studies have been done on this subject [9, 39, 40]. The causative agent, MTBC,

is transmitted through air. Individuals with active TB bacteria in their lungs can

infect others when they sneeze, cough and speak. One of the main difference between

TB and other infectious diseases is that only a small portion of individuals that are

infected develop progressive disease immediately. Most people, after their initial

expose to the MTBC, will mount an effective immune response which prevents the

bacteria from proliferating. These individuals, although carrying TB bacteria, will

not show any symptoms nor will they be infectious. However, they do have a small

possibility of developing active TB through endogenous reactivation or exogenous

infection [7]. In our model, each individual has one of the following three statuses:

• Susceptible: Individuals without any TB infection, but susceptible to it.

• Latent: Individuals with latent TB infection are people who are infected with

MTBC, but the bacteria have not yet progressed to make the hosts have active

TB. These individuals are also not infectious. For every month, they have a

small possibility of developing active TB. Here we assume the main factor

for active TB is endogenous reactivation. Exogenous infection occurs mainly

in heavily exposed and/or immunocompromised individuals [7, 39]. The U.S.

has low TB incidence and exogenous infection is rare compared to endogenous

reactivation, we so ignore it in latent individuals.

• Active: Individuals are infected with MTBC and have developed active TB.

These people are infectious. For every time unit, they have the possibility to

be treated and thus removed from the active TB patients pool.

The relations of these three types of individuals are illustrated in Figure 3.1.

35
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Figure 3.1: The relations of the three types of individual in the model.
When a susceptible person is exogenously infected with
MTBC, he/she will either become active immediately or en-
ter the latent status. Once an individual acquires latent in-
fection, he/she will become active through one of two ways:
exogenous infection or endogenous reactivation. In this study
we assume patients with latent infections progress to active
TB only through endogenous reactivation.

3.2 Patient Clustering

In certain low TB incidence countries such as Australia, Canada and United

Status, foreign-born persons constitute the majority of TB cases [41–43]. In the

United States, 57% of reported TB cases were among foreign-born persons [11, 44],

in spite of the fact that there are only 12.9% foreign-born in the total population

[45]. Based on these facts, better understanding of transmission among foreign-

born patients will have great impact on TB control. As mentioned before, using the

DNA fingerprinting technology, MTBC isolates can be clustered into groups, within

which every isolate shares the identical genotype. The MTBC isolates with identical

genotypes are refered as a TB strain in this study. We define a patient cluster as
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the following way.

Definition 1. A patient cluster is defined as patients who are infected by the MTBC

isolates with identical genotypes. The genotypes are defined by RFLP and spoligo-

types.

We also assume no mutations occur, i.e. no infected patient leaves the cluster

by having been infected by a mutated strain.

We will focus on the groups of foreign-born TB patients within the same

cluster, which normally contains 2-10 persons. In our model, we assume all the

foreign-born patients develop active TB disease in one of two following ways:

1. Endogenous reactivation: These patients were infected before immigration

but do not have active TB at the time of immigration. They develop active

disease by the means of endogenous reactivation.

2. Recent transmission: Patients in the category entered the country without

TB infection. They are exogenously infected after immigration by a TB patient

in the United State and then progress to active disease.

At this stage, we exclude the possibilities that the immigrants within the cluster are

infected by someone outside the cluster (domestic TB patients who share the same

TB strain). We will consider this case in the next chapter.

Given the times that the foreign-born TB patients entered the country and

the times when they were diagnosed, we are trying to infer whether one particular

patient acquires his/her disease through endogenous reactivation or recent transmis-

sion. Being able to answer this question could help make TB control more effective,

allow better allocation of scarce TB control resources, and prevent TB outbreaks.

We develop mathematical models to answer this question.

3.3 Model

Mathematical epidemiological models of TB are well studied. Most of these

models assume continuous time and use ordinary differential equations [7, 39, 40].

Ozcagalar et al. wrote an excellent review of the recent TB epidemiology models [27].



38

These models are suitable to study the dynamics among the population sizes of

each type of individual (Susceptible, Latent and Active). They do a good job in

finding some of the important statistics of TB, such as reproduction number and

epidemic threshold [39]. These models typically do not consider MTBC genotypes.

In our model, we are interested in understanding the dynamics of a smaller cluster

of TB patients who are infected by the MTBC isolates with identical genotype.

The small size of the patients involved allows us the develop mathematical models

at an individual level. The goal of our model is to estimate the status of one

individual. Ideally, we should construct a continuous time model for the accuracy.

We choose to model the problem in discrete time for the following two reasons: 1) It

is theoretically and technically simpler to compute with the discrete time framework;

2) The question we are trying to answer does not require the time resolution that

would necessitate modeling in continuous time.

The following paragraphs will introduce the assumptions of our model. When

a person is infected with TB bacteria, he/she will progress with one of the two

possible routes: fast or slow route. The fast route corresponds to developing active

TB immediately after the infection. The slow route represents the latent status,

in which the individual carries the bacteria, but is not infectious. In the slow

route, the individual will have a certain chance to develop active TB by endogenous

reactivation. There is δ chance an infected person will enter the fast route, while

there is 1 − δ chance that this person will enter the slow route. In this route, the

patient will have a probability α to become actively infectious each month. Due to

strict immigration medical checks before entry, new immigrants with active TB at

arrival are rare, therefore we assume when a foreign-born patient enters the country,

he/she is either susceptible or latent. For patients with latent MTBC infection, we

assume the only way for this patient to develop active TB is through endogenous

reactivation, while ignoring the possibility of exogenous infection for a person with

latent status. This is because the purpose of this model is to study the epidemiology

of TB in the United States, a low TB incidence country, where exogenous infections

are rare relative to endogenous reactivations. [7, 39].

Suppose there are n foreign-born patients in the cluster (as in definition 1), we
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label these patients I(1), I(2), ..., I(n). There are no people outside this cluster who

can infect the patients inside the cluster. Each foreign-born patient has a entry time

t
(a)
0 and a diagnosis time t

(a)
1 ; we use a 2 dimentional vector t(a) to represent these

two times, i.e. t(a) = [t
(a)
0 , t

(a)
1 ]. After the diagnosis time, we assume the patient is

no longer infectious and thus removed from the patient population.

The parameters used in our model are shown in the following list.

• π: The probability that one patient enters the country with latent infection.

• S(a): The event that the ith foreign-born patient comes in with latent infection.

S(a) represents the event that the ith foreign-born patient is susceptible at the

time of entering.

• t(a) = [t
(a)
0 , t

(a)
1 ]: The times that the ith patient enters the country (t

(a)
0 ) and

the time he/she is diagnosed (t
(a)
1 ).

• β: The probability that I(b) is infected by I(a) each month, given I(a) is infec-

tious at that month.

• δ: The probability of entering fast route (immediately active disease) after the

event of infection.

• α: The probability of developing active TB while the patient is in slow route

(latent status) each month.

• γ: Once a patient develops active TB, the probability (per month) that he/she

will be diagnosed each month.

Geometric random variables are used to model the time that a patient remains

susceptible, latent or active. The probability mass function of the geometric random

variable with the success probability θ that we use is,

pX(x) = (1− θ)xθ, x = 0, 1, 2, ... (3.1)
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Figure 3.2: The timeline of an individual entering the country with latent
infection. The patient comes in with latent infection in month
1, becomes active in month 5 and finally is diagnosed in month
7. Each month he/she remains latent with probability 1 −
α. Once the individual become active, each month he/she
remains active with probability 1− γ.

Latent Infection If an individual enters the country with latent infection, every

month he/she will have a probability of α to become active. Therefore each month

the individual remains latent with probability 1 − α. Once the individual become

active, he/she will have a probability γ to be diagnosed each month, including the

month when he/she become active. Each month the individual remains active with

probability 1 − γ. The last month the individual is diagnosed with probability γ.

For example, suppose that an individual comes in with latent infection in month

1, becomes active in month 5 and is diagnosed in month 7. This happens with the

following probability:

(1− α)4α(1− γ)2γ (3.2)

The timeline is of this example is shown in Figure 3.2.

Susceptible If an individual is susceptible at entry time, i.e. without latent in-

fection, and is diagnosed in a later month, this means that he/she must be infected

after the entry. As discussed before, after the infection, the individual has δ chance

to becomes active immediately (fast route) and probability of 1−δ to become latent

(slow route). For instance, let’s consider a TB cluster with size 2. Suppose an in-
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dividual comes in susceptible in the month 1 and is diagnosed in month 7. Just for

the purpose of demonstration, assume the other patient is active from month 1 to 7.

This implies that each month the susceptible individual will have a probability β to

be infected. Suppose this individual is infected in the month 3 and becomes active

immediately. We are computing the probability of the event in which the following

happen: 1) The patient (susceptible) comes in in the 1st month, AND 2) is infected

in the 3rd month, AND 3) becomes active in the 3rd month, AND 4) is diagnosed in

the 7th month. This probability is written as follows,

δ(1− β)2β(1− γ)4γ (3.3)

Note that the month when the individual is infected is counted as one month that

he/she remains active.

Instead of being active immediately after infection, suppose the patient be-

comes latent and later active in month 5. While cases 1), 2) and 4) in the previous

event remain the same, case 3) in the previous paragraph is now changed to “be-

comes active in the 5th month”. The corresponding probability is computed as:

(1− δ)(1− β)2β(1− α)2α(1− γ)2γ (3.4)

Note that the month when the patient is infected is counted as one month he/she

remains latent. Similarly, the month the individual become active is counted as

one month he/she remains active. The timeline of the susceptible case is shown in

Figure 3.3.

2-person case For simplicity, we will start introducing our model with a cluster

of two patients: I(1) and I(2). We assume there are no active TB patients outside the

cluster who could infect I(1) and I(2). This implies that there are at least one of I(1)

and I(2) enters the country with latent infection. Therefore, we only consider the

following three cases: S(1) S(2), S(1)S(2) and S(1)S(2). We would like to compute the

conditional probability that I(2) being latently infected at the time of entry given

the entry and diagnosis times of I(1) and I(2).
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Figure 3.3: The timeline of an individual who is susceptible at entry time.
He/she comes in month 1, is infected in month 3 and is diag-
nosed in month 7. Assume the other patient in the 2-person
cluster is active from month 1 to 7. With probability δ, the
individual will enter the fast route. With probability 1 − δ,
the person will enter the slow route.

We will present two methods: 2-body method which computes the probability of

every possible case; 1-body mean field method which makes simplifying assumptions.

3.3.1 2-body Method

The 2-body method is the brute force computation of all the cases. The

conditional probabilities of observing the diagnosis times of I1 and I2 given their

entry times and the initial statuses are computed. The probability that I2 enters

with latent infection can be computed using these conditional probabilities.

i. S(1) S(2) Both patients had latent infection at the time of immigration. They

progress to active TB through slow route. The time that a patient remain latent can

be modeled by a geometric random variable with success probability α. Once active,

the time that he/she will remain active until getting diagnosed can be modeled by
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Figure 3.4: The time each patient remain latent will be a geometric ran-
dom variable with success probability α, the time he/she
remains active will be another geometric random variable
with success probability γ. For each patient, the time he/she
spends between entering to getting diagnosed will be a sum
of two geometric random variables

.

another geometric random variable with success probability γ. Thus for each patient,

the length of time from entering the country until getting diagnosed can be viewed

as a sum of two geometric random variables as illustrated in figure 3.4.

For our derivation, we require the following simple result. Give two geometric

random variables X1 and X2 with success probability θ1 and θ2, the probability of

observing the event of X1 +X2 = x will be

p(X1 +X2 = x) =
x∑
i=0

(1− θ1)iθ1(1− θ2)x−iθ2

=
θ1θ2[(1− θ1)x+1 − (1− θ2)x+1]

θ2 − θ1

(3.5)

Given a patient has latent infection and he/she entered at t
(a)
0 and was di-

agnosed at t
(a)
1 , the total length of time each individual spends in the country is

t
(a)
1 − t

(a)
0 , excluding the last month when he/she is diagnosed. This value is mod-

eled by a sum of two geometric random variables with success probability α and γ

respectively. Therefore, the corresponding probability follows equation (3.5),

p(t
(a)
1 |t

(a)
0 ,S(a)) =

αγ[(1− α)t
(a)
1 −t

(a)
0 +1 − ((1− γ)t

(a)
1 −t

(a)
0 +1)]

γ − α
(3.6)
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Figure 3.5: An illustration of the time periods that I(1) and I(2) spend
from entry to diagnosis. Note that these two periods do not
overlap.

Note that in the case, one patient’s entry time is independent of the other

patient’s diagnosis time and entry status. Therefore, we have the following,

p(t
(1)
1 |t

(1)
0 ,S(1))p(t

(2)
1 |t

(2)
0 ,S(2))

= p(t
(1)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2))p(t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2))

= p(t
(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2))

ii. S(1)S(2) I(1) has latent infection and I(2) is susceptible at the time of immigra-

tion. If the time periods that I(1) and I(2) each spend between entry and diagnosis

do not overlap, which means I(1) enters after I(2) is diagnosed (t
(1)
0 > t

(2)
1 ) or I(2)

enters after I(1) is diagnosed (t
(1)
1 < t

(2)
0 ), then we have p(t(1), t(2),S(1),S(2)) = 0.

Figure 3.5 illustrates this case.

If the two time periods overlap, after I(1) becomes active, I(2) will start to

have the risk to be infected. If I(1) successfully infected I(2) by the time he/she is

diagnosed, I(2) will enter one of the two routes: fast route with probability δ or slow

route with 1− δ. In the fast route, I(2) becomes active immediately and remains so

until getting diagnosed. On the other hand, if I(2) enters the slow route, he/she will

have latent infection. I(2) will remain latent until becoming active. Finally, I(2) will

be diagnosed and removed from the population. This case is illustrated by Figure

3.6.

Similar to the previous case, the time that a patient remains latent or active

will be modeled by geometric random variables with success probabilities α and γ
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Figure 3.6: Similar to the S(1),S(2) case, the times that each patient re-
mains latent (active) will be modeled by geometric random
variables with success probabilities α (γ). The time from
when I(2) starts having the risk to be infected to the time of
infection, will be modeled by geometric random variable with
success probability β. After infection, I(2) will enter one of
the two routes.

respectively. The time when I(2) starts having the risk to be infected will be I(1)’s

active time or I(2)’s entry time, whichever is later. The time when I(2) stops having

the risk will be I(1) or I(2)’s diagnosis time, whichever is earlier. Suppose the time

when I(1) becomes active is tactive, the period that I(2) is at risk to the infected is

max(tactive, t
(2)
0 )→ min(t

(1)
1 , t

(2)
1 ) (3.7)

Given that I(1) is active at a certain month, assuming I(2) already entered the

country, the probability that I(2) is infected will be β. Therefore, the length of the

time from when I(2) starts to have risk to the time of infection will be modeled by

a geometric random variable with success probability β. This case is illustrated in

Figure 3.6.
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Again, the entering and diagnosing times of I(1) and I(2) are represented by

vectors t(1) = [t
(1)
0 , t

(1)
1 ], t(2) = [t

(2)
0 , t

(2)
1 ]. Given I(1) has latent infection and I(2) is

susceptible at the time of entering and their entry times are t
(1)
0 , t

(2)
0 , the probability

of observing the diagnosis times t
(1)
1 , t

(2)
1 will be

p(t
(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2)) =

t
(1)
1∑

i=t
(1)
0

{
(1− α)i−t

(1)
0 α(1− γ)t

(1)
1 −iγ

·
τ2∑
j=τ1

(1− β)j−τ1β ·
{
δ(1− γ)t

(2)
1 −jγ

+ (1− δ)αγ[(1− α)t
(2)
1 −j+1 − ((1− γ)t

(2)
1 −j+1)]

γ − α

}}

(3.8)

where τ1 = max(i, t
(2)
0 ) and τ2 = min(t

(1)
1 , t

(2)
1 ).

Explanation of Equation (3.8)

•
t
(1)
1∑

i=t
(1)
0

(1−α)i−t
(1)
0 α(1−γ)t

(1)
1 −iγ. This part sums over the probabilities of all the

months, i, when I(1) could become active. Each month while I(1) has latent

infection, there is α chance of becoming active. Once activated, I(1) will have a

γ chance of being diagnosed each month. The month that I(1) becomes active

is counted as a month that he/she is active and can be diagnosed; therefore

we have t
(1)
1 − i as superscript.

•
τ2∑
j=τ1

(1−β)j−iβ. The second part sums over the probabilities of all the months,

when I(2) will be infected. We are assuming in the month when I(1) is diag-

nosed, which is t
(1)
1 here, he/she can still infect I(2). Given the activation time

of I(1) is i, from the outer summation, the months that I(2) could be infected

range from τ1 = max(i, t
(2)
0 ) to τ2 = min(t

(1)
1 , t

(2)
1 ). Each of these months, the

probability of I(2) being infected is β.
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• δ(1−γ)t
(2)
1 −jγ. Once I(2) is infected at month j, as discussed before, there is a δ

chance that he/she will enter the fast route, i.e. becoming active immediately.

In this route, the patient will have a γ chance being diagnosed each month.

• (1 − δ)
αγ[(1− α)t

(2)
1 −j+1 − ((1− γ)t

(2)
1 −j+1)]

γ − α
. I(2) could also enter the slow

route, i.e. the patient progresses from latent to active and is finally diagnosed

at t
(2)
1 . The length of time from the moment I(2) enters the slow route (month

j) to the moment before he/she is diagnosed (month t
(2)
1 ) is t

(2)
1 − j. This is

modeled as a sum of two geometric random variables with success probabilities

α and γ. We can use equation (3.5) again to compute this probability.

Under the current assumption of constant β, the inner summation of equation

(3.8) are combinations of the geometric sums. After simplification, it becomes the

following

p(t
(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2)) =

t
(1)
1∑

i=t
(1)
0

(1− α)i−t
(1)
0 α(1− γ)t

(1)
1 −iγ

·
{
δβγ

β − γ
A+

(1− δ)αβγ
γ − α

[
1

β − α
B − 1

β − γ
C

]}
(3.9)

where A, B and C are defined as follows,

A = (1− γ)t
(2)
1 −τ1+1 − (1− β)τ2−τ1+1(1− γ)t

(2)
1 −τ2

B = (1− α)t
(2)
1 −τ1+2 − (1− β)τ2−τ1+1β(1− α)t

(2)
1 −τ2+1

C = (1− γ)t
(2)
1 −τ1+2 − (1− β)τ2−τ1+1β(1− γ)t

(2)
1 −τ2+1

Equation (3.9) can be further simplified using the formula of geometric sum. How-

ever, we will have to use Equation (3.8) when we considering the more important

case later, where β is time-dependent. Further simplifying Equation (3.9) will create

too complicated an expression to be of much practical use.
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iii. S(1)S(2) This case will be exactly the same with S(1)S(2), after switching the

indexes.

iv. S(1)S(2) At this stage, we assume there is no active patients other than I(1)

and I(2). Therefore, we have

p(t
(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2)) = 0 (3.10)

Now we have the conditional probabilities of the diagnosis time given the entry

time and the initial statuses and we would like to compute p(S(2)|t(1)
0 , t

(2)
0 , t

(1)
1 , t

(2)
1 ).

Since I(1) and I(2) are the first and second patients who are diagnosed in the foreign

born population, we also need to include the information of “no other people are

diagnosed by I(2)’s diagnosis time. Let Gα, Gβ, Gγ be the geometric random vari-

ables with success probability α, β, γ respectively. Note that here β is constant and

represents the average probability of a susceptible person being infected in a par-

ticular month. Let XL, XS be the time latent, susceptible people spend from entry

to diagnosis. Based on these assumptions, we have XL = Gα + Gγ; XS = Gβ + Gγ

with probability δ, and XS = Gβ +Gα+Gγ with probability 1−δ. Since γ >> α, β,

we have Gα, Gβ >> Gγ. We therefore approximate XL = Gα; XS = Gβ with prob-

ability δ, and XS = Gβ +Gα with probability 1− δ. Let FXL
(x) be the cumulative

distribution function of XL, i.e. FXL
(x) = P{XL ≤ x}. 1−FXL

(x) is easy to obtain,

1− FXL
(x) = (1− α)x+1 (3.11)

To derive FXS
(x), we need to formulate P{Gβ+Gα > x} first. The probability mass

function of the sum of two geometric random variables is defined as in Equation (3.5):

P{Gβ +Gα = x} =
βα [(1− β)x+1 − (1− α)x+1]

α− β
(3.12)

P{Gβ +Gα > x} = P{Gβ +Gα = x+ 1}+ P{Gβ +Gα = x+ 2}+ ...

=
α(1− β)x+2 − β(1− α)x+2

α− β
(3.13)
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Again, let FXS
(x) be the cumulative distribution function of XS. Based on the

result from Equation (3.13), 1− FXS
(x) can be computed as follows:

1− FXS
(x) = δ(1− β)x+1 + (1− δ)α(1− β)x+2 − β(1− α)x+2

α− β

=

[
δ +

(1− δ)(1− β)α

α− β

]
(1− β)x+1 − (1− δ)β

α− β
(1− α)x+2

(3.14)

Let T be the time that an individual spends from entry to t
(2)
1 , i.e. the individual

has not yet been diagnosed by t
(2)
1 . Assume the average life expectancy of the

immigrants (starting from the time of first entry to the country) is 600 months. In

the simulation, every immigrant is removed from the population after 600 months

after entry. Assume people enter with constant rate, after sufficiently long time, T

is uniformly distributed in [0, 599]. The expectations of 1−FXL
(T ) and 1−FXS

(T )

are computed as follows

E[1− FXL
(T )] =

(1− α)1 − (1− α)601

600α
(3.15)

E[1− FXS
(T )] = A

(1− β)1 − (1− β)601

600β
−B (1− α)2 − (1− α)602

600α
(3.16)

Where

A = δ +
(1− δ)(1− β)α

α− β

B =
(1− δ)β
α− β

For convenience, let’s use the following notations

• E[1− FXL
(T )]→ HXL

• E[1− FXS
(T )]→ HXS

HXL
(HXS

) computes the average probability of an person with entry status as
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latent (susceptible) and remains not being diagnosed for a random time T , which

is the time from his/her entry to I(2)’s diagnosis time. Assume the initial disease

status is independent of the entry times, we have the following

• PLL = p(t
(1)
1 , t

(2)
1 ,S(1),S(2)|t(1)

0 , t
(2)
0 ) = p(t

(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2))π2

• PSS = p(t
(1)
1 , t

(2)
1 ,S(1),S(2)|t(1)

0 , t
(2)
0 ) = p(t

(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2))(1− π)2

• PSL = p(t
(1)
1 , t

(2)
1 ,S(1),S(2)|t(1)

0 , t
(2)
0 ) = p(t

(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2))π(1− π)

• PLS = p(t
(1)
1 , t

(2)
1 ,S(1),S(2)|t(1)

0 , t
(2)
0 ) = p(t

(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2))π(1− π)

Assume there are NL latent people and NS susceptible persons in our problem

universe. In the first scenario I(1) and I(2) are both latent at entry, the average

probability that the rest of the people with latent infection have not been diagnosed

by t
(2)
1 is HNL−2

XL
. The probability that all the NS susceptible people have not been

infected and diagnosed by T is HNS
XS

. Therefore PLLH
NL−2
XL

HNS
XS

computes the prob-

ability that the first two patients are diagnosed at t
(1)
1 and t

(2)
1 , had latent infections

at the times of entry and the rest of people have not been diagnosed by t
(2)
1 . Similar

to PLLH
NL−2
XL

HNS
XS

, PSLH
NL−1
XL

HNS−1
XS

computes the case where I(1) was susceptible

and I(2) was latent; PLSH
NL−1
XL

HNS−1
XS

computes the case where I(1) was latent and

I(2) was susceptible; PSSH
NL
XL
HNS−2
XS

computes the case where both patients were

susceptible. Let us denote these expressions as follows,

• PLLHNL−2
XL

HNS
XS

as p̃(t
(1)
1 , t

(2)
1 ,S(1),S(2)|t(1)

0 , t
(2)
0 )

• PSLHNL−1
XL

HNS−1
XS

as p̃(t
(1)
1 , t

(2)
1 ,S(1),S(2)|t(1)

0 , t
(2)
0 )

• PLSHNL−1
XL

HNS−1
XS

as p̃(t
(1)
1 , t

(2)
1 ,S(1),S(2)|t(1)

0 , t
(2)
0 )

• PSSHNL
XL
HNS−2
XS

as p̃(t
(1)
1 , t

(2)
1 ,S(1),S(2)|t(1)

0 , t
(2)
0 )

The conditional probability of I(2) having latent infection at entry given all the
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timing information of both patients is computed as follows,

p̃(S(2)|t(1)
0 , t

(2)
0 , t

(1)
1 , t

(2)
1 ) =

p̃(t
(1)
1 , t

(2)
1 ,S(2)|t(1)

0 , t
(2)
0 )

p̃(t
(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 )

=

PLLH
NL−2
XL

HNS
XS

+ PSLH
NL−1
XL

HNS−1
XS

PLLH
NL−2
XL

HNS
XS

+ PSLH
NL−1
XL

HNS−1
XS

+ PLSH
NL−1
XL

HNS−1
XS

+ PSSH
NL
XL
HNS−2
XS

(3.17)

Divide both the numerator and denominator by HNL−2
XL

HNS−2
XS

and we have the

following:

p̃(S(2)|t(1)
0 , t

(2)
0 , t

(1)
1 , t

(2)
1 )

=
PLLH

2
XS

+ PSLHXL
HXS

PLLH2
XS

+ PSLHXL
HXS

+ PLSHXL
HXS

+ PSSH2
XL

(3.18)

With results from equation (3.18), the conditional probability of I(2) being suscep-

tible at entry can be easily computed.

p̃(S(2)|t(1)
0 , t

(2)
0 , t

(1)
1 , t

(2)
1 )

= 1− p̃(S(2)|t(1)
0 , t

(2)
0 , t

(1)
1 , t

(2)
1 )

=
PSSH

2
XL

+ PLSHXL
HXS

PLLH2
XS

+ PLSHXL
HXS

+ PLSHXL
HXS

+ PSSH2
XL

(3.19)

3.3.2 1-body Mean Field Method

The previous model works well with two patients. When the number of pa-

tients increases, however, the model becomes complicated quickly since it needs to

compute all the possible infection scenarios. For instance, assume there are three

patients, I(1), I(2) and I(3), where I(1) and I(2) entered susceptible and I(3) entered

with latent infection, which is S(1)S(2)S(3) in our notation. We need to consider

whether both of I(1) and I(2) were infected by I(3) or if I(2) was infected by I(3) first

and then I(1) was infected by I(2), etc.

To solve this problem, we present a 1-body mean field method. Since we are
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only interested in how one of the patients acquired TB infection, we are computing

for more information than we need in the 1-body method. In reality, there are

n patients I(1) to I(n), but we are only interested in knowing one patient’s status.

Let us say this patient is I(b). For the purpose of inferring I(b)’s disease status at

immigration, we approximate the problem by ignoring the cases in which I(b) infects

others.

First, we define Γa(k) as the infectivity contributed by I(a), a = 1...n, a 6= b

in month k. Let NF be the average total foreign born population in our modeling

universes, the probability that I(b) is infected by I(a) in one particular month k

is defined to be βa(k) =
Γa(k)

NF

. Note that Γa(k) is the infectivity contributed by

one active TB patient. An susceptible patient in the cluster will experience this

infectivity so that have a probability βa(k) to be infected by the active patient. If

I(b) enters with latent infection, the model does not need the information of the

other n − 1 patients. In the case where I(b) enters susceptible, we need to know

the probability of being infected by the other n − 1 patients in a particular month

k. Instead of computing exactly which patients are active in month k and taking

average over all the possible combinations, for each patient among {I(a)}a=1...n,a 6=b,

we compute the probability that he/she is active in month k given the diagnosis

time. The probability of being infected by I(a) in month k, βa(k), will be β ·
p{I(a) is active in month k|I(a)is diagnosed at t

(a)
1 }. The probability being infected

by anyone of the n−1 patients in month k will be computed as 1−
∏n

a=1,a6=b[1−βa(k)]

Let A(a) be the number of months that the ath patient spends from the month

he/she becomes active to the month before getting diagnosed. The likelihood that

I(a) is infectious at a certain month k is assumed to geometrically decay according

to the length of time from k to t
(a)
1 . We assume A(a) follows a geometric distribution

with success probability γ. Note that γ is also the probability that a patient is

diagnosed per month while he/she is in the active TB status. Here we reverse the

process to capture the dynamics of how long a patient remains infectious prior to

his/her diagnosis time.

The probability I(a) is infectious in month k (given t
(a)
0 ≤ k ≤ t

(a)
1 ) is equivalent

to the probability of A(a) ≥ t
(1)
i −k, which is computed as (1−γ)t

(a)
1 −k. This is because
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A(a) ≥ t
(a)
1 − k means there are at least t

(a)
1 − k months at which the active I(a) is

not diagnosed. For convenience, let us denote:

p{I(a) is active in month k|I(a)is diagnosed at t
(a)
1 } as pa(t

(a)
0 , t

(a)
1 , k)

and it is computed as follows:

pa(t
(a)
0 , t

(a)
1 , k) =

 (1− γ)t
(a)
1 −k if t

(a)
0 ≤ k ≤ t

(a)
1

0 otherwise
(3.20)

For simplicity, let’s start from the 2 patient case. Let two foreign-born patients

I(1), I(2), enter the country at t
(1)
0 , and t

(2)
0 . They are diagnosed at t

(1)
1 , t

(2)
1 . We

are trying to infer whether the second patient’s TB disease is latent reactivation or

recent transmission. We only need to compute the probability in two cases.

i. S(2) The probability that we observe t
(2)
1 given I(2) came in with latent infection

at t
(2)
0 and I(1) has entering/diagnosis times t

(1)
0 ,t

(1)
1 is

p(t
(2)
1 |S(2), t

(1)
0 , t

(1)
1 , t

(2)
0 ) = p(t

(2)
1 |S(2), t

(2)
0 )

=
αγ[(1− α)t

(2)
1 −t

(2)
0 +1 − ((1− γ)t

(2)
1 −t

(2)
0 +1)]

γ − α
(3.21)

Explanation of equation (3.21) Each month, there is a probability α for I(2)’s

latent infection to become active. After becoming active, he/she will have a chance

of γ per month of being diagnosed. The length of time from I(2) entering to getting

diagnosed is modeled by a sum of two geometric random variables with success

probabilities α and γ respectively. The value is computed by equation (3.5).

ii. S(2) I(2) can be infected by I(1) only if I(1) is active. The probability of I(2)

being infected by I(1) in month k will depends on the probability that I(1) is active
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in that month, therefore it will be a function of time, k.

β̂(k) = β · pa(t(1)
0 , t

(1)
1 , k) (3.22)

where pa(t
(1)
0 , t

(1)
1 , k) is defined as in equation (3.20). Once I(2) is infected, the

dynamics will be the same as in the 2-body method. After the infection, I(2) could

enter one of the two routes: fast (with probability δ) or slow (with probability

1 − δ). In the fast route, I(2) becomes active immediately after the infection and

remains active with a probability of γ being diagnosed every month. In the slow

route, I(2) first acquires latent infection and with probability α per month becomes

active. Once I(2)’s infection was activated, there is probability γ for he/she getting

diagnosed every month. This case is illustrated in Figure 3.7.

Figure 3.7: The likelihood of I(1) being infectious is represented by the
color of the first bar: the deeper the color the more likely
that I(1) is infectious at that time. If the month falls out of
the range of [t

(1)
0 , t

(1)
1 ], the likelihood is 0. The probability that

I(2) will be infected by I(1) is a function of time, β̂(k). Once I(2)

is infected, the dynamics will be the same as in the 2-body
method.

The conditional probability, given I(2) is susceptible at the time of entering,
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and we observed t
(1)
0 , t

(2)
0 and t

(1)
1 will be

p(t
(2)
1 |S(2), t

(1)
0 , t

(1)
1 , t

(2)
0 ) =

t
(2)
1∑

j=t
(2)
0

j−1∏
k=t

(2)
0

(1− β̂(k))β̂(j) ·
[
δ(1− γ)t

(2)
1 −jγ

+ (1− δ)αγ[(1− α)t
(2)
1 −j+1 − ((1− γ)t

(2)
1 −j+1)]

γ − α
]
(3.23)

Explanation of Equation (3.23): We are given that I(2) does not have latent

infection at the time of entering the county and I(1) enters at t
(1)
0 and is diagnosed

with TB disease at t
(2)
0 . The chance that I(2) could be infected by I(1) will be a

function of time, β̂(k) computed as in equation (3.20).

j−1∏
k=t

(2)
0

(1 − β̂(k))β̂(j) is the

probability that I(2) is infected at month i. After the infection, I(2) has probability

δ of entering the fast route and 1 − δ of entering the slow route. As in the 2-body

method, in the fast route, the time from the infection to diagnosis will be modeled

as the sum of two random variables with success probabilities α and γ. In the slow

route, the time I(2) remains active before getting diagnosed will be modeled as a

random variable with success probability γ.

Estimation of p(S(2)|t(1), t(2)) Now we have two conditional probabilities:

p(t
(2)
1 |S(2), t

(1)
0 , t

(1)
1 , t

(2)
0 ) and p(t

(2)
1 |S(2), t

(1)
0 , t

(1)
1 , t

(2)
0 ). Assume there are NL people

with latent infection and NS susceptible. We assume the initial disease status of

one patient is independent of his/her own entry time and the entry and diagnosis

times of the other patient in the cluster. For convenience, we have the following

definitions,

• PL = p(t
(2)
1 ,S(2)|t(1)

0 , t
(1)
1 , t

(2)
0 ) = p(t

(2)
1 |t

(1)
0 , t

(1)
1 , t

(2)
0 ,S(2))π

• PS = p(t
(2)
1 ,S(2)|t(1)

0 , t
(1)
1 , t

(2)
0 ) = p(t

(2)
1 |t

(1)
0 , t

(1)
1 , t

(2)
0 )(1− π)

Following the same logic as in the 2-body method, the conditional probabil-

ity of observing t
(2)
1 and I(2)’s initial status given the t

(1)
0 , t

(1)
1 , t

(2)
0 can be computed
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as the following

p̃(t
(2)
1 ,S(2)|t(1)

0 , t
(1)
1 , t

(2)
0 ) = PLH

NL−1
XL

HNS
XS

(3.24)

p̃(t
(2)
1 ,S(2)|t(1)

0 , t
(1)
1 , t

(2)
0 ) = PSH

NL
XL
HNS−1
XS

(3.25)

where HXL
and HXS

follows the same definition, i.e., equation (3.15) and (3.16).

Finally, the conditional probabilities that we are interested in are computed as the

following:

p̃(S(2)|t(1)
0 , t

(2)
0 , t

(1)
1 , t

(2)
1 )

=
PLH

NL−1
XL

HNS
XS

PLH
NL−1
XL

HNS
XS

+ PSH
NL
XL
HNS−1
XS

=
PLHXS

PLHXS
+ PSHXL

(3.26)

p̃(S(2)|t(1)
0 , t

(2)
0 , t

(1)
1 , t

(2)
1 ) = 1− p̃(S(2)|t(1)

0 , t
(2)
0 , t

(1)
1 , t

(2)
1 )

=
PSHXL

PLHXS
+ PSHXL

(3.27)

3.3.3 The 1-body Mean Field Method for n-person Case

Now let’s consider the case with n foreign-born patients, I(1), I(2),..., I(n).

Among these n patients, assume I(a) is the patient whose latent status we are in-

terested in knowing. We need to compute conditional probabilities in the following

two cases.

i. S(a) Given that I(a) has latent infection at the time of entering the country, then

I(a) will be independent of I(b), b = 1, 2, ..., n, b 6= a. The conditional probability of

observing t
(a)
1 given S(a), {t(b)}b=1...n,b 6=a and t

(a)
0 can be computed with the same

method as in the two person case, equation (3.21).
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p(t
(a)
1 |S(a), {t(b)}b=1...n,b 6=a, t

(a)
0 ) = p(t

(a)
1 |S(a), t

(a)
0 )

=
αγ[(1− α)t

(a)
1 −t

(a)
0 +1 − ((1− γ)t

(a)
1 −t

(a)
0 +1)]

γ − α
(3.28)

ii. S(a) Given that I(a) enters the country without latent infection, he/she will

be infected by one of the patients in {I(b)}i=1...n,i 6=j. As in the two person case, the

likelihood that patient I(b) is infectious in month k is assumed to be geometrically

decay according to the length of time from k to t
(b)
1 , with success probability γ.

This likelihood, pa(t
(b)
0 , t

(b)
1 , k), can be computed using the same equation (3.20).

The chance that I(a) is infected by I(b) at month k will be a function of k,

β̂i(k) = β · pa(t(b)0 , t
(b)
1 , k) (3.29)

We denote the probability being infected by I(b) by βi(k). Since I(a) could be infected

by any one of {I(b)}b=1...n,b 6=a, the chance of being infected by each of the patients

need to be combined to create a single infection probability. The probability that

I(a) is infected at a given month k is,

β̃(k) = 1−
n∏

b=1,b 6=a

[1− β̂i(k)] (3.30)

where β̂i(k) is the defined in equation (3.29).

For example, suppose there are 4 individuals in a TB cluster. We would like

to investigate the infectivity contributed by the first 3 patients. The entry and

diagnosis times of the first three patients are the following: I(1) : [1, 16], I(2) : [6, 18]

and I(3) : [7, 25]. Assume β = 0.5 and γ = 0.3, the probability being infected by

each patient and by all three are shown in Figure 3.8. The probability being infected

by the bth patient will be at its maximum value in the month of diagnosis. It decays

geometrically when going towards the entry time. The probability being infected

by one particular patient is zero in the months outside range he/she spend in the

country, i.e. from entry to diagnosis.
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Figure 3.8: The entry and diagnosis times of the three individuals are
I(1) : [1, 16], I(2) : [6, 18] and I(3) : [7, 25]. Assume β = 0.5 and
γ = 0.3. The infectivities contributed by each individual will
have a maximum value of 0.5 at the diagnosis time and geo-
metrically decay, with success probability 0.3, going further
towards entry time and away from the diagnosis time. The
probability being infected by one particular patient is zero in
the month outside the range of time from his/her entry to
diagnosis. The probability being infected by any of the three
patients will be a combination of the three.

An illustration of the 1-body mean field method is shown in Figure 3.9. The

periods of time {I(b)}b=1,2,...,n,b 6=a spend between entering the country to being diag-

nosed are presented by bars. The depth of the color indicates the likelihood that

I(b) is infectious at that time: the darker the color the more likely. The abilities

of I(b) to infect I(a) are combined to create a “super-individual”, represented by

the multi-sectional bar. The probability that the “super-individual” infects I(a) at

month k is β̃(k), as defined in equation (3.30). For the case of I(a), the dynamics

are the same as in the two person 1-body mean field method.

Once we have the probability of I(a) being infected at each month k, we can

compute the conditional probability of observing t
(a)
1 given I(a) came in without
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Figure 3.9: The likelihood of {I(b)}b=1...n,b 6=a being infectious is represented
by the color depth of the first n-1 bars: the deeper the color
the more likely that I(b) is infectious at that time. If the
month falls out of the range of [t

(b)
0 , t

(b)
1 ], the likelihood is 0.

I(a) could be infected by any one of {I(b)}i=1...n,i 6=j, who are
combined in into a “super-individual”. Each month k the
probability that I(a) is infected by this “super-individual” is
β̃(k), as defined in equation (3.30). The value of β̃(k) is repre-
sented by the depth of the color of multi-sectional bar. Once
I(a) is infected, the dynamics will be the same as in the 2-body
method.

latent infection , t(b), b = 1, 2, ..., n, b 6= a and t
(a)
0 . The computation follows the

same formula as the two person case, i.e. equation (3.23).
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p(t
(a)
1 |S(a), {t(b)}i=1...n,i 6=j, t

(a)
0 ) =

t
(a)
1∑

i=t
(a)
0

i−1∏
k=t

(a)
1

(1− β̃(k))β̃(i) ·
[
δ(1− γ)t

(a)
1 −iγ

+ (1− δ)αγ[(1− α)t
(a)
1 −i+1 − ((1− γ)t

(a)
1 −i+1)]

γ − α
]

(3.31)

Other than the n patients in the cluster, we assume there are NL people with

latent infection and NS susceptible. Let us denote p(t
(a)
1 |S(a), {t(b)}b=1,2,...,n,b 6=a, t

(a)
0 )

as PS and p(t
(a)
1 |S(a), {t(b)}i=1,2,...,n,b 6=a, t

(a)
0 ) as PL. The conditional probabilities

p̃(t
(a)
1 ,S(a)|{t(b)}b=1,2,...,n,b 6=a, t

(a)
0 ) and p̃(t

(a)
1 ,S(a)|{t(b)}b=1,2,...,n,b 6=a, t

(a)
0 ) can be com-

puted using equation (3.26) and (3.27). The conditional probability p̃(S(a)|t(1), ..., t(n))

can be computed as follows,

p̃(S(a)|t(1), ..., t(n)) = (3.32)

p̃(t
(a)
1 ,S(a)|{t(b)}b=1,2,...,n,b 6=a, t

(a)
0 )

p̃(t
(a)
1 ,S(a)|{t(b)}b=1,2,...,n,b 6=a, t

(a)
0 ) + p̃(t

(a)
1 ,S(a)|{t(b)}b=1,2,...,n,b 6=a, t

(a)
0 )

(3.33)

3.4 Infection Bath

In the previous section, we ignore the infectivity contributed by the foreign-

born TB patients who have not yet been diagnosed and the ones in the domestic

population. To make our model more realistic, we need to include the background

infection bath. Assume there are hidden active patients, who have the same TB

strain with our foreign-born patient cluster, in the foreign and domestic population.

We see these patients as one super-individual with constant infectious rate. Each

month, each individual in the patient’s cluster will have a probability βs of being

infected by this super individual.
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3.4.1 2-body Method

For a cluster with 2 patients, unlike the previous case, both patients could

enter susceptible. This is because the TB bacteria could enter the cluster from the

super-individual (the infection bath). Therefore there will be four different cases

and we need to compute the probability of observing the entry and diagnosis times

given all these cases.

i. S(1) S(2) If both of the patients enter with latent infection, the super-individual

has no impact on I(1) and I(2). This case is exactly the same as the model without

the domestic infection bath. The computation for the probability of observing t(1)

and t(2) and S(1) S(2) follows equations (3.6).

ii. S(1)S(2) In this case, I(1) enters with latent infection while I(2) enters suscepti-

ble. Before I(1) becomes active or after he/she is diagnosed, I(2) has the risk to be

infected by the super-individual with the probability βs each month. In the period

while I(1) is active, the collective transmission probability of I(1) and the super-

individual is βt per month, where βt = 1 − (1 − β)(1 − βs). Figure 3.10 shows an

illustration of the transmission dynamics of this case.

Given I(1) has latent infection, I(2) is susceptible at the entry time and I(1)

becomes active in the ith month, t
(1)
0 ≤ i ≤ t

(1)
1 , we would like to compute the

conditional probability that we observed diagnosis time:

p
(
t
(2)
1 |t(1), t

(2)
0 , I(1)active at i, S(1),S(2)

)
. The computation is different from the model without the background infection rate

since the probability being infected by I(1) in a specific month depends on whether

I(1) is active in that month. Let’s denote the probability being infected by I(1) in

month t, given I(1) becomes active in month i and is diagnosed at t
(1)
1 as β(i, t

(1)
1 , t).

It is defined as follows:
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Figure 3.10: An illustration of the 2-person case with a domestic infec-
tion bath represented as a super individual with constant
transmission rate. Assume I(1) is active from i to t

(1)
1 , within

this period, I(2) has a probability βt being infected. Other
than the period from i to t

(1)
1 , I(2) has a probability βs being

infected.

β(i, t
(1)
1 , t) =

 1− (1− β)(1− βs) if i ≤ t ≤ t
(1)
1

βs otherwise
(3.34)

In the period when I(1) is active, the probability for I(2) being infected is a

result bases on the combination of the infectivity from I(1) and the background rate.

In the period when I(1) has not yet become active or he/she is diagnosed, the only

infecitivity for I(2) comes from the background rate. The conditional probability is

computed as the following:
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p
(
t
(2)
1 |t

(1)
0 , t

(1)
1 , t

(2)
0 , I(1)active at i, S(1),S(2)

)
=

t
(2)
1∑

j=t
(2)
0

 j−1∏
k=t

(1)
0

(1− β(i, t
(1)
1 , k))

 β(i, t
(1)
1 , j)f(j, t

(2)
1 ) (3.35)

where f(j, t) computes the probability that a susceptible patient in the cluster,

which is I(2) in the case, that was infected in month j will be diagnosed in month t.

f(j, t) = δ(1− γ)t−jγ + (1− δ)αγ[(1− α)t−j+1 − (1− γ)t−j+1]

γ − α
(3.36)

Explanation of Equation (3.35): Suppose I(2) is infected in month j, then for

month t
(2)
0 to j − 1, the probability that I(2) is not infected is 1 − β(i, t

(1)
1 , k). The

probability that I(2) is infected in month j is β(i, t
(1)
1 , j). This gives us the first

part in equation (3.35):
[∏j−1

k=t
(1)
0

(1− β(i, t
(1)
1 , k))

]
β(i, t

(1)
1 , j). Once I(2) is infected

in month j, the dynamics is the same as that of model in the previous section, i.e.

the model without the background infectivity. The computation for the probability

that I(2) will be diagnosed in t
(2)
1 , given he/she was infected in month j, is expressed

in equation (3.36).

Given I(1) has latent infection at the time of entry, the event “I(1) becomes

active in month i ” is independent of the initial status and the entry time of I(2).

Therefore we have the following expression

p
(
I(1)active at i, t

(1)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2)

)
= p

(
I(1)active at i, t

(1)
1 |t

(1)
0 ,S(1)

)
= (1− α)i−t

(1)
0 α(1− γ)t

(1)
1 −iγ (3.37)

The conditional probability of observing t
(1)
1 and t

(2)
1 given t

(1)
0 , t

(2)
0 , S(1),S(2) could

be computed by looping over all the possible values for the time when I(1) becomes
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active.

p(t
(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2))

=

t
(1)
1∑

i=t
(1)
0

[
p
(
I(1)active at i, t

(1)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2)

)
(3.38)

·p
(
t
(2)
1 |t

(1)
0 , t

(1)
1 , t

(2)
0 , I(1)active at i, S(1),S(2)

)]

=

t
(1)
1∑

i=t
(1)
0

[
(1− α)i−t

(1)
0 α(1− γ)t

(1)
1 −iγ (3.39)

·p
(
t
(2)
1 |t

(1)
0 , t

(1)
1 , t

(2)
0 , I(1)active at i, S(1),S(2)

)]
(3.40)

where p
(
t
(2)
1 |t

(1)
0 , t

(1)
1 , t

(2)
0 , I(1)active at i, S(1),S(2)

)
is computed as in equation (3.36)

iii. S(1) S(2) This case will be the same as S(1)S(2), after exchanging the patient

index.

iv. S(1) S(2) The scenario in which I(1) and I(2) both enter without latent infec-

tions is possible now, since the TB bacteria could enter the cluster from the domestic

infection bath. If the two periods that I(1) and I(2) spend from entry to diagnosis

do not overlap, i.e. t
(1)
1 < t

(2)
0 or t

(2)
1 < t

(1)
0 , the only possible scenario will be both

I(1) and I(2) are infected by the super-individual. The conditional probability of this

scenario will be

p(t
(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2)) =

t
(1)
1∑

i=t
(1)
0

(1− βs)i−t
(1)
0 βsf(i, t

(1)
1 )

·
t
(2)
1∑

i=t
(2)
0

(1− βs)i−t
(2)
0 βsf(i, t

(2)
1 ) (3.41)
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where f(i, t) is defined as in equation (3.36). If the periods overlap, the computation

depends on four time points: 1. time when I(1) is infected (τ1); 2. time when I(1)

becomes active (τ2); 3. time when I(2) is infected (τ3); and 4. time when I(2)

becomes active (τ4). We define β2(t) to be the probability for I(1) being infected

by I(2). For example, in the month when I(2) is not active, β2(t) = βs and β2(t) =

1− (1− βs)(1− β) if I(2) is active. Similarly, we have the probability for I(2) being

infected by I(1) as β1(t). The probability for I(1) being infected by I(2) in month t is

β(t, τ4, t
(2)
1 ), which is defined as in equation (3.34). Similarly, the probability for I(2)

being infected by I(1) in month t is β(t, τ2, t
(1)
1 ). Let us define function h(τ1, τ2, τ3, τ4)

as follows,

h(τ1, τ2, τ3, τ4) =

τ1−1∏
k=t

(1)
0

[1− β(τ4, t
(2)
1 , k)]β(τ4, t

(2)
1 , τ1)g(τ1, τ2, t

(1)
1 )

·
τ3−1∏
k=t

(2)
0

[1− β(τ2, t
(1)
1 , k)]β(τ2, t

(1)
1 , τ3)g(τ3, τ4, t

(2)
1 ) (3.42)

where g(a, b, t) is a helper function defined as follows,

g(a, b, t) = I{a=b}δ(1− γ)t−aγ + (1− δ)(1− α)b−aα(1− γ)t−bγ (3.43)

where I{a=b} is an indicator function with value 1 if a = b (0 otherwise). The function

g(a, b, t) in equation (3.43) computes the probability that a patient is infected in

month a and is diagnosed in month t. There is a probability δ that this patient

becomes active immediately after infection. There is a probability 1 − δ that the

patient becomes latent and becomes active later in month b. The final conditional

probability can be computed by looping over all possible values for τ1-τ4,

p(t
(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2)) =

t
(1)
1∑

τ1=t
(1)
0

t
(1)
1∑

τ2=τ1

t
(2)
1∑

τ3=t
(2)
0

t
(2)
1∑

τ4=τ3

h(τ1, τ2, τ3, τ4) (3.44)

Since computing equation (3.44), which involves 4 loops, will be extremely expensive,

we make approximations to simplify the transmission dynamics in this case.
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We assume there are only three scenarios for I(1) and I(2) to be infected: 1) I(1)

is infected by the background bath first. I(2) is infected by I(1) or the background

later; 2) I(2) is infected by the background bath first. I(1) is infected by I(2) or the

background later; 3) I(1) and I(2) are infected by the background at the same time.

Note that we skipped the case that both patients are infected by the background at

different time. This is because that this case is considered in case 1) and 2). For

scenario 1, the probability is computed as follows:

p1 =

min(t
(1)
1 ,t

(2)
1 )∑

j=t
(1)
0

 j∑
i=t

(1)
0

(1− βs)(i−t(1)0 )βsg(i, j, t
(1)
1 )

min(t
(1)
1 ,t

(2)
1 )∑

k=j

(1− β̃)(k−j)β̃f(k, t
(2)
1 )


(3.45)

where g(i, j, t
(1)
1 ) is defined as in equation (3.43).

j∑
i=t

(1)
0

(1 − βs)
(i−t(1)0 )βsg(i, j, t

(1)
1 )

computes the probability of I(1) being infected by the background (in any month

from t
(1)
0 to j), becoming active in month j and is diagnosed at t

(1)
1 . f(k, t

(2)
1 )

is defined as in equation (3.36) and

min(t
(1)
1 ,t

(2)
1 )∑

k=j

(1 − β̃)(k−j)β̃f(k, t
(2)
1 ) computes the

probability I(2) is infected by I(1) or the background (after I(1) becomes active and

before being diagnosed) and is diagnosed at t
(2)
1 . β̃ is the combined infectivity of

I(1) and the background. It is defined as β̃ = 1 − (1 − β)(1 − βs). For scenario 2,

the computation will be the same as scenario one after switching the patient index.

The probability of this scenario is denoted as p2.

For scenario 3, the probability p3 is computed as follows,

p3 =

t
(1)
1∑
i=τa

(1− βs)(i−t(1)0 )βsf(i, t
(2)
1 )(1− βs)(i−t(2)0 )βsf(i, t

(2)
1 )

=

t
(1)
1∑
i=τa

(1− βs)(2i−t(1)0 −t
(2)
0 )β2

sf(i, t
(2)
1 )f(i, t

(2)
1 ) (3.46)

where τa = max(t
(1)
0 , t

(2)
0 ). Finally, p(t

(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2)) = p1 + p2 + p3. We

now have computed:
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1. p(t
(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2))

2. p(t
(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2))

3. p(t
(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2))

4. p(t
(1)
1 , t

(2)
1 |t

(1)
0 , t

(2)
0 ,S(1),S(2))

With these four conditional probabilities ready, the ones that we are interested in,

i.e. p(S(2)|t(1)
0 , t

(1)
1 , t

(2)
0 , t

(2)
1 ) and p(S(2)|t(1)

0 , t
(1)
1 , t

(2)
0 , t

(2)
1 ) can be computed following

the same procedure as in the 2-body method without the background infection

bath: equation (3.18) and (3.19).

In the event of clusters with more than two patients, we could compute with

any two patients while treating them as a cluster of size 2 and putting everyone

else in the background. For a cluster of size n, we choose the patients I(a) and I(b)

and treat them as a cluster of size two. The probability being infected by the n− 2

patients (other than I(a) and I(b)) can be computed as in equation (3.30). This

probability can be further combined with the constant infection probability βs for

the domestic background bath or β for the active patient within the cluster. For the

target patient (either I(a) or I(b)), the probability being infected by the background

bath is now a function of time: β̂s(t), which is defined as follows,

β̂s(t) = 1− (1− β̃(t))(1− βs) (3.47)

where β̃(t) is the probability of being infected by the patients I(c), c = 1, 2, ..., n; c 6=
a, b, as in equation (3.30). The model is indifferent of choosing I(a) or I(b) as the

target patient. For the purpose of illustration, let us choose I(a) as the target patient.

The probability of I(a) being infected by I(b), given he/she is active in a month is β.

The probability of I(a) being infected by the other patients (other than I(b)) is β̃(t).

Therefore the probability being infected by the other patients within the cluster will

be

β̂(t) = 1− (1− β̃(t))(1− β) (3.48)
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The transmission dynamics remain the same and we only need to modify background

infection rate from a constant βs to a function of time β̂s(t). In equations (3.34), the

constant probability βs is now replaced by β̂s(t). In equation (3.41) and (3.45), the

part (1 − βs)i−t
(j)
0 βs (j = 1, 2) computes the probability that I(j) enter susceptible

at t
(j)
0 and is infected in month i. This part becomes

i−1∏
k=t

(j)
0

(1− β̂s(k))β̂s(i), if i > t
(j)
0

or β̂s(t
(j)
0 ) if i = t

(j)
0 . Similarly in equation (3.45) the part (1− β)i−t

(j)
0 β (j = 1, 2) is

now:
i−1∏
k=t

(j)
0

(1− β̂(k))β̂(i), if i > t
(j)
0 or β̂(t

(j)
0 ) if i = t

(j)
0 .

In this case, we are computing with two patients and one of them is the target

patient. Since we put all the rest of the patients into the background and treat their

infectivities in a similar manner as in the 1-body mean field method. Therefore, we

also call the 2-body method as 2-body mean field method.

3.4.2 1-body Mean Field Method

For the 1-body mean field method, adding the background infection bath is

simple. We just need to include the probability of being infected by the domestic

infection bath, in addition to the probability of being infected by other patients in

the cluster, which is β̃(t) in equation (3.30). The new probability of being infected

by the background infection bath is computed using the same equation (3.47). The

rest of the computation will be the same as the approximation model without the

bath.

3.5 Conclusions

So far we have been built the theoretical background of our model. Based on

the information we have, which is the entry and the diagnosis time of each patient in

one TB cluster, we are able to estimate the conditional probability that any of them

enter with latent infection (or susceptible). We have developed the 2-body method,

which could compute the probabilities on a clusters of size 2. However, dud to the

computational complexity of the 2-body method, the computation of the clusters

of size larger than 2 is expensive. The 1-body mean field method solves this prob-
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lem by simplifying the transmission dynamic. It largely reduces the computational

complexity and be able to compute clusters with any size. Ideally, we will estimate

the parameters from the data and apply our model to the data. The characteris-

tics of the patients data we have prevent us from having an accurate estimation of

the parameters. The next chapter will discuss the problem of parameter estimation

through the analysis of Fisher Information.



CHAPTER 4

Parameter Estimation

4.1 Introduction

We have collected the TB patient data in New York city from November 2001

to December 2007 [46]. For each patient, we have the following information: 1)

Spoligotype; 2) RFLP; 3) entry time; 4)diagnosis time and 5) country of birth. For

each patient we have the DNA fingerprints which allows us to organize them into

small clusters. All the patients in one TB cluster share the identical Spoligotype

and RFLP.

Each patient has a finite life span. Therefore, every patient in our data was di-

agnosed with TB before he/she dies from natural causes. If the time a patient spent

from entry to diagnosis is modeled by a random variable, then this random variable

is truncated. Suppose there are n foreign-born persons in our model universe, our

data could only contain those who are diagnosed before reaching the end of his/her

life span. Since latent reactivation and transmission are rare events, only a small

portion of n will be diagnosed. We argue that the data do not contain sufficient

information to have an accurate estimation on the parameters we are interested in.

We will illustrate this idea by using two simplified models.

We built two models with geometric random variables with truncation as

analogies to the real data. Here we assume each individual in our model have

the same life span: k. Individuals exist in our model for more than k months will be

removed. The analysis of Fisher Information and Cramér-Rao Lower Bound shows

that, for our simplified models, the variance of the estimated parameters increases

as the truncation value k decreases. This is confirmed with results of the numerical

experiments. In our TB model, where k is relatively small, the data we have is not

enough for an accurate parameter estimation.

This chapter is organized in the following way. First, the simplified models

are introduced. Next, data are simulated with various truncation values k and

the parameters are estimated with Maximum Likelihood Estimation. Finally, an

70
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analysis using Fisher Information is conducted to link theories to the simulation

results and the available data sets.

4.2 Single GRV with Truncation

Given a GRV Y , with probability mass function

f(y|α) = (1− α)yα y = 0, 1, 2, ... (4.1)

Now we consider the likelihood function of some truncated observations of Y , con-

ditioned on Y ≤ k, where k is a positive integer. Note that this is a simpler analogy

of our model: Suppose all the people enter at the same time and enter with latent

infection and each month a patient has probability α to be diagnosed. The life

expectancy is k months. We observed those patients who are diagnosed before the

kth month.

Suppose {yi}mi=1 are the samples from the geometric distribution with success

probability α. Let {xi}ni=1 be chosen from {yi}mi=1 with the condition xi ≤ k. There-

fore, the truncated GRV with the success probability α and truncation value k has

the probability mass function as the following

f(x|α) =
(1− α)xα

1− (1− α)k+1
x = 0, 1, 2, ..., k (4.2)

The likelihood function of the n observations with parameter α is

L(α) =
(1− α)

∑n
i=1 xiαn

[1− (1− α)k+1]n
(4.3)

The log-likelihood will be

logL(α) = log(1− α)
n∑
i=1

xi + nlog(α)− nlog[1− (1− α)k+1] (4.4)

Taking the derivative of the log-likelihood respect to α, we have,

dlogL(α)

dα
= −

∑n
i=1 xi

1− α
+
n

α
− n(k + 1)(1− α)k

1− (1− α)k+1
(4.5)
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4.3 Hybrid GRV with Truncation

Let Y be a hybrid GRV such that with probability π, the success probability

is α and with probability 1− π, the success probability is β. The probability mass

function of Y is

f(y|π) =

 (1− α)yα with probability π

(1− β)yβ with probability 1− π
(4.6)

Similarly, let {yi}mi=1 be the samples from the pmf in equation (4.6). Let {xi}ni=1 be

chosen from {yi}mi=1 with the condition xi ≤ k. The random variable, X, resulting

from truncating Y at k, has the following probability mass function,

f(x|π) =
(1− β)xβ + π[(1− α)xα− (1− β)xβ]

1− (1− β)k+1 − π[(1− α)k+1 − (1− β)k+1]
x = 0, 1, 2, ..., k (4.7)

The likelihood function of the observations with parameter π is

L(π) =
n∏
i=1

{
(1− β)xiβ + π[(1− α)xiα− (1− β)xiβ]

1− (1− β)k+1 − π[(1− α)k+1 − (1− β)k+1]

}
(4.8)

The log-likelihood is

logL(π) =
n∑
i=1

{
log ((1− β)xiβ + π[(1− α)xiα− (1− β)xiβ])

−log(1− (1− β)k+1 − π[(1− α)k+1 − (1− β)k+1])
}

(4.9)

Taking the derivative respect to π, we have

dlogL(π)

dπ
=

n∑
i=1

{ A(xi)

(1− β)xi + πA(xi)
+

B

1− (1− β)k+1 − πB

}
(4.10)

where A(xi) = (1 − α)xiα − (1 − β)xiβ and B = (1 − α)k+1 − (1 − β)k+1. To find

the π maximizes equation (4.9), we need to solve
dlogL(π)

dπ
= 0.
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4.4 Asymptotic Behavior of MLE

Suppose we have n observations of random variable X, {xi}ni=1. X follows

the distribution whose density/mass function is f(x|θ), where θ is the parameter

associated with the distribution. The log-likelihood will be

log(L)(θ) =
n∑
i=1

logf(xi|θ) (4.11)

Let θ∗ is the Maximum Likelihood Estimator (MLE), i.e. θ∗ maximizes log(L)(θ).

Supposing the true parameter is θ0 and n→∞, we have the following [47],

(θ∗ − θ0) ∼ N
(

0,
1

nI(θ0)

)
(4.12)

Equation (4.12) states that the error of a maximum likelihood estimator is asymp-

totically normally distributed with mean 0 and variance
1

nI(θ0)
. I(θ0) is the Fisher

Information, which is defined as the following

I(θ0) = −E
[
d2logf(X|θ)

dθ2
|θ=θ0

]
(4.13)

note that
1

nI(θ0)
is also the Cramér-Rao Lower Bound (CRLB) for the variance of

any unbiased estimator with n observations. Now we would like to compute the

CRLB of the two estimators we showed before.

4.4.1 Single GRV with Truncation

Let X be a GRV with success probability α and truncation value k. Let us

define function f(X|α) as the following

f(X|α) =
(1− α)Xα

1− (1− α)k+1
(4.14)
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The expectation of X is

E[X] =
k∑
x=0

x
(1− α)xα

1− (1− α)k+1

=
(1− α)α

1− (1− α)k+1

k∑
x=0

x(1− α)x−1

=
(1− α)α

1− (1− α)k+1

[
− d

dα

k∑
x=0

(1− α)x

]

=
(1− α)α

1− (1− α)k+1

[
− d

dα

1− (1− α)k+1

α

]
=

1− α
1− (1− α)k+1

1− (k + 1)(1− α)kα− (1− α)k+1

α
(4.15)

The Fisher information of α is computed using the following steps.

logf(X|α) = Xlog(1− α) + log(α)− log
(
1− (1− α)k+1

)
(4.16)

dlogf(X|α)

dα
= − X

1− α
+

1

α
− (k + 1)(1− α)k

1− (1− α)k+1
(4.17)

d2logf(X|α)

dα2
= − X

(1− α)2
− 1

α2

+
(k + 1)k(1− α)k−1[1− (1− α)k+1] + (k + 1)2(1− α)2k

[1− (1− α)k+1]2

(4.18)

Let α0 be the true parameter, the Fisher Information is computed as the following

I(α0) = −E

[
d2logf(X|α)

dα2

∣∣∣∣
α=α0

]

=
E[X]

(1− α0)2
+

1

α2
0

−(k + 1)k(1− α0)k−1[1− (1− α0)k+1] + (k + 1)2(1− α0)2k

[1− (1− α0)k+1]2

(4.19)
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The standard deviation of the estimator α∗ is computed based on the CRLB i.e.

σ =

√
1

nI(α0)
.

Asymptotic Analysis When kα0 is small, we can assume the following

1− (1− α0)k+1 = (k + 1)α0 −
1

2
(k + 1)kα2

0 +O(k3α3
0) (4.20)

Now let us substitute equation (4.20) in to the third term of equation (4.19) and

analyze the expression separately. The first term in the numerator becomes the

following

(k + 1)k(1− α0)k−1[1− (1− α0)k+1]

= (k + 1)k[1− (k − 1)α0 +
1

2
(k − 1)(k − 2)α2

0 +O(k3α3
0)] · [(k + 1)α0

−1

2
(k + 1)kα2

0 +O(k3α3
0)]

= (k + 1)k[(k + 1)α0 −
1

2
(k + 1)kα2

0 − (k − 1)(k + 1)α2
0 +O(k3α3

0)]

= (k + 1)2[kα0 −
1

2
k2α2

0 − k(k − 1)α2
0 +O(k3α3

0)] (4.21)

The second term in the numerator becomes

(k + 1)2(1− α0)2k = (k + 1)2[1− kα0 +
1

2
k(k − 1)α2

0 +O(k3α3
0)]2

= (k + 1)2[1− 2kα0 + k(k − 1)α2
0 + k2α2

0 +O(k3α3
0)]

(4.22)

The numerator is now,

(k + 1)k(1− α0)k−1[1− (1− α0)k+1] + (k + 1)2(1− α0)2k

= (k + 1)2[1− kα0 +
1

2
k2α2

0 +O(k3α3
0)] (4.23)
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Apply Taylor expansion on the denominator, keep to k3α3
0 and then use negative

binomial expansion, we have the following

[1− (1− α0)k+1]−2

= [(k + 1)α0 −
1

2
(k + 1)kα2

0 +
1

6
(k + 1)k(k − 1)α3

0 +O(k4α4
0)]−2

= (k + 1)−2α−2
0 [1− (

1

2
kα0 −

1

6
k(k − 1)α2

0 +O(k3α3
0))]−2

= (k + 1)−2α−2
0 [1 + kα0 −

1

3
k(k − 1)α2

0 +
3

4
k2α2

0 +O(k3α3
0)] (4.24)

Multiply the numerator term and the denominator term, we have

α−2
0 [1− kα0 +

1

2
k2α2

0 +O(k3α3
0)][1 + kα0 −

1

3
k(k − 1)α2

0 +
3

4
k2α2

0 +O(k3α3
0)]

=
1

α2
0

− k2

12
+
k

3
+O(k3α0)

=
1

α2
0

− k2

12
+O(k) +O(k3α0) (4.25)

Since X ≤ k, we have E[X] ≈ O(k). Combining the three terms, we have the

asymptotic expression of the Fisher Information for the single GRV with truncation,

Î(α0) ≈ k2

12
+O(k) +O(k3α0) (4.26)

The exact and approximated values of Fisher Information of the truncated GRV are

plot against different truncation values in Figure 4.1.

Comments The leading term of the Fisher Information of the single GRV with

truncation is k2

12
. Let’s say we have n data points and we would like to have an

estimator of α with standard deviation 0.1α0. We have the following,√
12

nk2
= 0.1α0 (4.27)

Solving for n, we have

n =
1200

α2
0k

2
(4.28)
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Figure 4.1: The approximation value of the Fisher Information as in
equation (4.26) and the exact values as in equation (4.19)
are plotted against different truncation value k.

If α0k = 0.05, then we need 480000 data points in order to have an estimator for

α with 10% standard deviation. Again under the condition of α0k = 0.05, with

only 5000 data points, the standard deviation of the estimator of α will be around

0.98α0. This model is a simplified analogy to the case for foreign-born individuals

with latent TB. Suppose the probability of becoming active given the individual

is in latent state is α0 per month. Since the time from becoming active to being

diagnosed is relatively short comparing to the time from entry to becoming active,

we ignore this time. We also assume each latent individual have a risk of 5% to

develop active disease in the life time [6]. The time for a TB patient to spend

from entry to diagnosis can be modeled as a GRV with success probability α0 and

truncation value k, such that α0k = 0.05. We only have 3,741 data points and this

includes the patients who were infected after entry. Therefore, we conclude that we

don’t have enough data to have an accurate estimator of α.



78

4.4.2 Hybrid GRV with Truncation

We would also like to compute the Fisher Information of the hybrid GRV with

truncation. Let X be the the random variable. Let us define function f(X|π) as the

following

f(X|π) =
(1− β)Xβ + π[(1− α)Xα− (1− β)Xβ]

1− (1− β)k+1 − π[(1− α)k+1 − (1− β)k+1]
(4.29)

For convenience, let us define A(X) = (1−α)Xα− (1−β)Xβ and B = (1−α)k+1−
(1−β)k+1. The first and second derivatives of logf(X|π) respect to π are computed

as following

dlogf(X|π)

dπ
=

A(X)

(1− β)Xβ + πA(X)
+

B

1− (1− β)k+1 − πB
(4.30)

d2logf(X|π)

dπ2
= − A(X)2

[(1− β)Xβ + πA(X)]2
+

B2

[1− (1− β)k+1 − πB]2
(4.31)

The Fisher information is I(π0) = −E
[
d2logf(X|π)

dπ2
|π=π0

]
, where π0 is the true

parameter. Obtaining an analytic form is difficult, but since X has finite state space

and has probability mass function defined as in equation (4.7), we can compute this

expectation exactly.

−E

[
d2logf(X|π)

dπ2

∣∣∣∣
π=π0

]
= −

k∑
x=0

d2logf(x|π)

dπ2

∣∣∣∣
π=π0

f(x|π0)

=
k∑
x=0

{[ A(x)2

[(1− β)xβ + πA(x)]2
− B2

[1− (1− β)k+1 − πB]2

]
· (1− β)xβ + πA(x)

1− (1− β)k+1 − πB

}
(4.32)

Similarly, the standard deviation based on the CRLB of π∗ is computed using Fisher

Information, σ =

√
1

nI(π0)
.
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Asymptotic Analysis We would like to obtain an asymptotic expression of equa-

tion (4.32) in terms of the truncation value k when kα, kβ << 1. Let us denote

the first and second derivative of f(x|π) respect to π as f ′(x|π) and f ′′(x|π). The

Fisher Information for the hybrid GRV can be written in the following form,

−E [log′′(f(X|π))|π=π0 ]

=
k∑
x=0

f ′(x|π)2 − f ′′(x|π)f(x|π)

f(x|π)2
f(x|π)

∣∣∣∣
π=π0

=
k∑
x=0

[
f ′(x|π)2

f(x|π)
− f ′′(x|π)

]∣∣∣∣
π=π0

(4.33)

We would like to obtain an asymptotic expression of f(x|π), f ′(x|π) and f ′′(x|π).

Let us start with f(x|π). Assume β = ωα, α and β are in the same order of

magnitude. The numerator of f(x|π) can be written in the following,

(1− β)xβ + π[(1− α)xα− (1− β)xβ]

= [ωα− xω2α2 +
1

2
x(x− 1)ω3α3](1− π) + [α− xα2 +

1

2
x(x− 1)α3]π +O(k3α4)

= [(1− π)ω + π]α− [ω2(1− π) + π]xα2 +
1

2
[ω3(1− π) + π]x(x− 1)α3 +O(k3α4)

= t1α− t2xα2 +
1

2
t3x(x− 1)α3 +O(k3α4) (4.34)

where t1, t2, and t3 are defined as the following,

t1 = ω(1− π) + π

t2 = ω2(1− π) + π

t3 = ω3(1− π) + π (4.35)

Following the similar procedure, the denominator of f(x|π) can be written as the

following expression,

1− (1− β)k+1 − π[(1− α)k+1 − (1− β)k+1]

= t1(k + 1)α− 1

2
t2(k + 1)kα2 +

1

6
t3(k + 1)k(k − 1)α3 +O(k4α4) (4.36)
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Combining these two and using negative binomial expansion on the denominator,

we have the following,

f(x|π) =
t1α− t2xα2 + 1

2
t3x(x− 1)α3 +O(k3α4)

t1(k + 1)α− 1
2
t2(k + 1)kα2 + 1

6
t3(k + 1)k(k − 1)α3 +O(k4α4)

=
1

(k + 1)t1

t1 − t2xα + 1
2
t3x(x− 1)α2 +O(k3α3)

1− 1
2
t2
t1
kα + 1

6
t3
t1
k(k − 1)α2 +O(k3α3)

=
1

k + 1
[1− t2

t1
xα +

1

2

t2
t1
kα +

1

2

t3
t1
x(x− 1)α2 − 1

2
(
t2
t1

)2xkα2

−1

6

t3
t1
k(k − 1)α2 +

1

4
(
t2
t1

)2k2α2 +O(k3α3)] (4.37)

Note that t1, t2 and t3 are function of π. Let us define the following,

g1(π) =
t2
t1

=
ω2(1− π) + π

ω(1− π) + π

g2(π) =
t3
t1

=
ω3(1− π) + π

ω(1− π) + π
(4.38)

Now f(x|π) becomes

f(x|π) =
1

k + 1
[1− g1(π)xα +

1

2
g1(π)kα +

1

2
g2(π)x(x− 1)α2 − 1

2
g2

1(π)xkα2

−1

6
g2(π)k(k − 1)α2 +

1

4
g2

1(π)k2α2 +O(k3α3)] (4.39)

We can compute the asymptotic expression of f ′(x|π) and f ′′(x|π) and substitute

them into equation (4.33) to obtain the asymptotic express for the Fisher Informa-

tion. Let us look at the first term
k∑
x=0

f ′(x|π)2

f(x|π)
.

f ′(x|π)2 =
1

(k + 1)2
[g′21 (π)x2α2 +

1

4
g′21 (π)k2α2 − g′21 (π)kxα2 +O(k3α3)]

1

f(x|π)
= (k + 1)(1 +O(kα))

f ′(x|π)2

f(x|π)
=

1

k + 1
[g′21 (π)x2α2 +

1

4
g′21 (π)k2α2 − g′21 (π)kxα2 +O(k3α3)]
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k∑
x=0

f ′(x|π)2

f(x|π)
=

1

6
g′21 (π)k(2k + 1)α2 − 1

4
g′21 (π)k2α2 +O(k3α3) (4.40)

=
1

12
g′21 (π)k2α2 +O(kα2) +O(k3α3) (4.41)

Next, let us look at the second term
k∑
x=0

f ′′(x|π)

f ′′(x|π) =
1

k + 1

{
− g′′1(π)xα +

1

2
g′′1(π)kα +

1

2
g′′2(π)x(x− 1)α2

−[g′21 (π) + g1(π)g′′1(π)]xkα2 − 1

6
g′′2(π)k(k − 1)α2

+
1

2
[g′21 (π) + g1(π)g′′1(π)]k2α2 +O(k3α3)

}
(4.42)

k∑
x=0

f ′′(x|π) =
1

2
g′′2(π)[

k(2k + 1)

6
− k

2
]α2 − 1

6
g′′2(π)k(k − 1)α2 +O(k3α3)

= O(kα2) +O(k3α3) (4.43)

Subtract the result of equation (4.43) from that of equation (4.41) and evaluate

g1(π) at π = π0, we have the expression for the approximated Fisher Information of

the hybrid GRV with truncation k, as written in the following

−E [log′′(f(X|π))|π=π0 ]

=
k∑
x=0

[
f ′(x|π)2

f(x|π)
− f ′′(x|π)

]∣∣∣∣
π=π0

=
1

12
g′21 (π)|π=π0k

2α2 +O(kα2) +O(k3α3)

=
1

12

(ω − 1)2ω2

[ω(1− π0) + π0]4
k2α2 +O(kα2) +O(k3α3) (4.44)

Let us use the leading order term of the Fisher Information of the hybrid GRV with

truncation to approximate the number of data points we need in order to obtain an

accurate estimator of π0. Given n data points and the true parameter π0, we would
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like to obtain an estimator with standard deviation επ0. We can solve the following

equation to get n. √
12

ng′21 (π)|π=π0k
2α2

= επ0

n =
12

g′21 (π)|π=π0π
2
0

1

ε2k2α2
(4.45)

The first term
12

g′21 (π)|π=π0π
2
0

is a function of ω and π0. Let us denote it as h(ω, π0).

For ω = [0, 5] and π0 = [0, 1], h(ω, π0) is plotted in log10 scale in Figure 4.2.

Figure 4.2: The values of the first term in equation (4.45): h(ω, π0) (in

log10 scale) in terms of different values of π0 and ω.

The actual number of data point needed to achieve an estimator of standard

deviation επ0 can be computed by dividing h(ω, π0) by ε2k2α2. With the kα = 0.05

and ε = 0.1, n is plotted in log10 scale for the different values of ω and π0 in

Figure 4.3. Moreover, ω = 1 implies α = β, in which case the data set contains

no information about the π0. Therefore, n = ∞ when ω = 1 as shown in the plot.
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For example, when ω = 0.5, π0 = 0.1 (these values are chosen to be similar to

the ones in the simulations later), we need approximately 7 × 109 data points in

order to obtain an estimator of π with standard deviation of 0.1π0. The model is a

simplified analogy for the case that an foreign-born individual entered with latent

infection with probability π. If the individual has latent infection, he/she will have

a probability α per month to be diagnosed. If he/she was susceptible at entry, then

there is a probability β per month to be diagnosed. Based on the similar reason as in

the toy model with single truncated GRV, we ignore the time between progression

to active status and diagnosis. Here we are trying to estimate π from the data.

This model illustrated that again we do not have enough data to obtain an accurate

estimation.

Figure 4.3: Given kα = 0.05, ε = 0.1, the number of data points needed

n (in log10 scale) to obtain an estimator for π with standard

deviation 0.1π0 in terms of different values of π0 and ω. Note

that n =∞ when ω = 1.
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4.5 Numerical Examples

In order to demonstrate the effects of the truncation on the parameters esti-

mation, numerical examples are performed.

4.5.1 Single GRV with Truncation

Let X be the GRV with success probability α and truncation value k and

{xi}ni=1 be the n observations. Again, X models the length of time that a foreign-

born individual spends from entry to diagnosis. k (months) is the life span of an

individual, starting from the time of entry. Therefore, individuals exist for more than

k months in our model will be removed. This effect is modeled by the truncation at

k. The log-likelihood function, logL(α), is defined as in equation (4.4). logL(α) is

computed for a range of different values of α ∈ ϕ. The α which maximizes logL(α)

is chosen as the maximum likelihood estimator.

α∗ = max
α∈ϕ

logL(α) (4.46)

This experiment tries to mimic the scenario of estimating the probability of

becoming active per month given a patient is latently infected, which is represented

by α in this experiment. Since the probability of being diagnosed once a patient

become active γ >> α, let us assume the time that a patient spends from entry

to diagnosis is modeled by a GRV with success probability α and truncated at k.

3 different values for k are chosen to demonstrate the impact of the truncation on

the estimation of α. First, a large k is chosen, which has a cdf, FY (k), greater

than 99%. In this case, the mle accurately reveals the real parameter. Second, a

relatively smaller k is chosen, with cdf around 45%. In this case, the mle estimator

is still accurate, but the standard error increases. Lastly, a small k with cdf less

than 5% is chosen. In this case, the mle fails to recover the real parameter and the

standard deviation is large (about the same as α, the parameter itself).

The estimation is performed under 3 different parameter settings. In all of

these 3 settings: α0 = 1×10−4, ϕ is a vector whose entries are 100 evenly separated

points in [1×10−9, 3×10−4]. Under each setting, 5000 random variables are sampled

for 1000 times and α∗ is computed each time. The histogram of the 1000 α∗ is shown
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in Figure 4.4

• Setting 1:

k = 50000, FY (k) = 0.9933

mean of α∗: 1.00× 10−4, σ(α∗) = 1.84× 10−6

σ = 1.55× 10−6

5000 GRVs with truncation k = 50, 000 are generated. Recall that Y is the

GRV without the truncation. The cdf of Y at k FY (k) = 0.9933 implies that

the truncation chooses 99.33% of Y . The standard deviation of α∗ = 1.84 ×
10−6. The standard deviation computed based on the CRLB σ = 1.55× 10−6.

• Setting 2:

k = 6000, FY (k) = 0.4513

mean of α∗: 9.97× 10−5, σ(α∗) = 8.71× 10−6

σ = 8.23× 10−6

• Setting 3:

k = 520, FY (k) = 0.0508

mean of α∗: 1.07× 10−4, σ(α∗) = 8.21× 10−5

σ = 9.40× 10−5

Note that in the setting 3, standard deviation computed based on CRLB is

greater than the actual standard deviation of the 1000 estimated α∗. This is because

in the computation, α is chosen from [1 × 10−9, 3 × 10−4]. A numerical example is

performed to demonstrate the effect of this clipping. 1000 random variables following

the normal distribution of N (1× 10−4, (9.40× 10−5)2) are generated: {zi}1000
i=1 . Set

zi = 1× 10−9 if zi < 1× 10−9 and zi = 3× 10−4 if zi > 3× 10−4. The mean of the

resulting {zi}1000
i=1 is 1.09−4 and standard deviation is 8.06× 10−5. The histogram of

the resulting {zi}1000
i=1 are shown in Figure 4.5.

We also computed the standard deviation based on the CRLB with 5000 ob-

servations. With the success probability as 1 × 10−4, σ for different values of k is

plotted in Figure 4.6. As shown in the plot, σ increases as the truncation value k
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Figure 4.4: The histograms of α∗ in 1000 estimations with 3 different
settings. The true value α0 is 10−4

Figure 4.5: The histogram of the 1000 random variables sampled from
normal distribution N (1 × 10−4, (9.40 × 10−5)2) and values
clipped between [1 × 10−9, 3 × 10−4]. The mean is 1.09 × 10−4

and sd is 8.06× 10−5
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Figure 4.6: Standard deviation of α∗ based on the CRLB with 5000 obser-
vations is plotted against different truncation values k. Suc-
cess probability: 1× 10−4

decreases. The data set we have (under the assumptions of our model) is most sim-

ilar to case 3 with α corresponds to the probability of becoming active from latent.

The experiment showed that with 5000 data points, which is more than the data

points we have, the standard error we have for the estimator of α is greater than

α itself. This indicates that it is unfeasible to obtain an accurate estimation for α

using our data set.

4.5.2 Hybrid GRV with Truncation

The estimation of the π in the hybrid GRV follows the same procedure as the

single GRV with truncation. The log-likelihood function logL(π) is defined as in

equation (4.9). π∗ = max
π∈ϕ

logL(π).

This experiment investigates the scenario of estimating the probability of an

immigrant entering the country with latent infection. Given a foreign born person

at entry, there is a probability π he/she is latently infected. In this case he/she

will have a probability α of becoming active each month. On the other hand, the

patient has a probability 1 − π of not being latently infected. In this case, he/she

has a probability β of being infected each month. Here we simplify the transmission
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by assuming patient becomes active immediately after infection. Similar as before,

we assume the time from becoming active to diagnosis is negligible. Therefore, for

each patient, the time from entry to diagnosis is modeled by this hybrid GRV with

truncation k. Using the same procedure as before, three values of k are chosen to

explore the effect of truncation on the estimation.

5000 hybrid GRV with truncation are simulated 1000 times. The estimation

is perform in each simulation with each of the 3 parameters settings. In all of the 3

settings, α = 1 × 10−4,β = 5 × 10−5, π0 = 0.1, ϕ is a vector whose entries are 100

evenly separated points in [0, 1]. The histograms of the estimated π are shown in

Figure 4.7.

• Setting 1:

k = 100000, FY (k) = 0.9939

mean of π∗ = 0.1004, σ(π∗) = 0.0252

σ = 0.0246.

5000 hybrid GRVs with truncation value k = 50000 are generated. Note

that Y is the hybrid GRV without the truncation. FY (k) = 0.9939 implies

the truncation chooses 99.39% of the orignally generated Y . The mean of the

1000 estimations of π is 0.1004, the standard deviation is 0.0252. The standard

deviation computed based on the CRLB is 0.0246.

• Setting 2:

k = 11000, FY (k) = 0.4474

mean of π∗ = 0.1045, σ(π∗) = 0.0630

σ = 0.0647.

• Setting 3:

k = 930, FY (k) = 0.0498

mean of π∗ = 0.3560, σ(π∗) = 0.4173

σ = 0.6462.

Under the assumption of our model, the data set we have is similar to the

case 3. π corresponds to the probability of a foreign-born individual being latent
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Figure 4.7: The histograms of π∗ in 1,000 estimations with 3 different
settings. The true value: π0 is 0.1.

at entry. For an individual, the probability of being diagnosed is α per month if

latent and β per month if susceptible. The percentage of individuals with latent

infections to develop active TB is 5-10% in their life time [6]. Here we assume the

probability for an individual to be diagnosed with TB before reaching the life span

k is 5%. Here we are trying to estimate π. The experiments shows that, with 5000

data points, the standard error of the estimator of π is again larger than its value.

Therefore, getting an accurate estimation based on our data set is impossible.

4.6 Conclusion

In this section we investigated the feasibility of parameter estimation with

the real patient data. The data for foreign born patients, containing entry and

diagnosis times, are collected under the condition that they are diagnosed before
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Figure 4.8: Standard deviation of π∗ based on the CRLB with 5000 ob-
servations plotted against different truncation values k. With
α = 1× 10−4, β = 5× 10−5, π = 0.1.

they are removed from the population by death (due to natural causes). The time

from entry to diagnosis is modeled as random variables. The effect of the limited life

span truncates the random variables at k. We simplified the transmission dynamics

and model the time from entry to diagnosis by geometric/hybrid geometric random

variables with truncation value k. We chose three different values of k to simulate

data and performed maximum likelihood estimations on the parameters. It is found

that the standard deviation of the maximum likelihood estimator increases as k

decreases. When k is set at a small values such that around 5% of the random

variables is less than k, the standard deviation of the estimators are approximately

the same as the estimators themselves. Therefore the estimators in the scenarios

with small truncation values are highly unreliable. Note that random variables

with small truncation values is a good approximation of the time that real TB

patients spend from entry to diagnosis, since only around 5-10% of patients with

latent infections become active in their lifetime [6]. In the toy model with single

truncated GRV, the success probability α represents the probability that an latent

individual becoming active in a month. In the model with hybrid GRV, β represents

the probability for a susceptible individual to be diagnosed each month (α has the
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same meaning as in the single GRV model). π represents the probability of entering

with latent infection.

The characteristics of the data posed difficulties on parameter estimation.

Fortunately, our model is shown to be insensitive to parameters. In the following

chapter, a range of parameters are chosen and our model is tested with different

combinations of these parameters. Finally, the model is applied to the real data to

help identify recent transmission TB cases.



CHAPTER 5

Application of the TB spread Model

5.1 Introduction

In order to better control TB and identify outbreaks, we need to distinguish

endogenous reactivations from recent transmissions. The traditional epidemiologi-

cal approach does so by interviewing patients to identify transmission routes. This

approach is both labor intensive and time consuming. The TB genotyping technolo-

gies have enriched the traditional methods. By clustering TB patients into smaller

groups, it makes probabilistic modeling of the transmission routes possible. Our

model takes advantage of the smaller sizes of the patient clusters and provides a

probabilistic estimation of endogenous reactivation versus recent transmission. We

first tested our model in the simulation data. The sensitivity to parameters is also

evaluated by experimenting with different combination of parameters values. Fi-

nally, the model is applied to the New York City data collected by Center of Disease

Control (CDC) from 2000-2007.

We use the receiver operating characteristic (ROC) curve to evaluate the mod-

els’ performance. Before proceeding to the application of our model, we will intro-

duce the ROC curve in the following section.

5.2 Receiver Operating Characteristic Curve

A receiver operating characteristic (ROC) curve is a plot that evaluates the

performance of a binary classifier. It is firstly used in signal detection theory and

is now a common technique in statistics and machine learning. It plots the ratio of

true positive out of the total positive against the ratio of false positive out of the

total negative at different discrimination thresholds [48].

5.2.1 Binary Classification Problem

Let’s consider a binary classification problem. There are N instances, each

belonging to one of two classes: positive (P) or negative (N). A classification model

92
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is a mapping of the instances to predicated classes [48]. The classification models

will produce a score, which is used to determinate the classes of the instances. Some

of models’ output scores are discrete and others might be continuous. For models

with continuous score, a threshold is chosen to discriminate different classes.

An example of binary classification with continuous score will be the pregnancy

test. The urine concentration of human chorionic gonadotropin (hCG), a hormone

produced by the fertilized egg, can be used to determine whether the test subject is

pregnant or not [49]. A hCG concentration higher than certain level will be classified

as pregnant. Each test subject will be an instance, belonging to one of two classes:

pregnant(P) or not pregnant(N). The hCG concentration is the score. A certain

level of the hCG concentration (the threshold) needs to be chosen to assign a class

to each subject.

Given a classification model and an instance, there are four possible outcomes.

1. The true class is P, and is classified as P. This case is called True Positive

2. The true class is N, and is classified as P. This case is called False Positive

3. The true class is N, and is classified as N. This case is called True Negative

4. The true class is P, and is classified as N. This case is called False Negative

These four outcomes are usually presented in a confusion matrix, shown in table

(5.1)

Table 5.1: A confusion matrix containing the four possible outcomes of
a binary classification problem

True Class

Classified
Class

P N

P
True

Positive
False
Positive

N
False

Negative
True

Negative
Total

Positive
Total

Negative
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5.2.2 ROC Curve

There are two terms associated with ROC analysis: True Positive Rate (TPR)

and False Positive Rate (FPR). They are computed as following

TPR =
Number of True Positive

Number of Total Positive
(5.1)

FPR =
Number of False Positive

Number of Total Negative
(5.2)

For different values of threshold, we will have different values of TPR and FPR. A

classification model with a specific threshold value which correctly identifies 60% of

the positive instances but also incorrectly classifies 30% of the negative instances as

positive will result in a point at [0.6, 0.3] on the ROC curve. A model of random

guess will generate a pair of TPR and FPR which lands on the straight line of y = x.

This is because at any threshold, if the random guess has a probability p to classify a

positive instance as positive, it will have the same probability to identify a negative

instance as positive.

Suppose there are N instances in a problem and each instance is assigned

a score si by the binary classification model. We sort the instances to make the

scores in descending order, i.e. s1 ≥ s2 ≥ ... ≥ sN . The threshold is set to equal

to each si. Instances with a score greater than the threshold will be classified

as positive, otherwise as negative. The corresponding TPR(si) and FPR(si) are

computed according to equation (5.1) and (5.2). The ROC curve is generated by

plotting TPR(si) versus FPR(si). Since there are no instances with score greater

than s1 and all the instances will have score greater than sN , we have the following:

TPR(sN − ε) = FPR(sN − ε) = 1 and TPR(s1) = FPR(s1) = 0 (ε is a dummy

positive value to create a point at (1,1)). Note TPR and FPR are both ratios,

therefore both of the domain and the range of the ROC curve will be [0, 1].

The ROC curve visualizes the trade-off between the benefit (TPR) and the cost

(FPR) of a classification model. A good model will generate a ROC curve above

the y = x line. The following example shows an classification problem with 10

positive and 10 negative instances and the corresponding ROC curve. The positive
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instances are represented as “1”s while the negatives ones are represented as “0”s.

The classification model generates a score from 0 to 1. This result is shown in table

(5.2). Figure (5.1) shows the ROC curve for this classification problem.

Table 5.2: Example of a classification problem with 10 positive (repre-
sented as 1) and 10 negative (represented as 0) instances. The
classification model generates a score from 0 to 1. The in-
stances are sorted in descending order by their assigned score
and numbered 1 to 20.

ID True Class Model Score ID True Class Model Score
1 1 0.97 11 1 0.50
2 1 0.94 12 0 0.47
3 1 0.92 13 1 0.43
4 1 0.86 14 0 0.35
5 1 0.83 15 1 0.32
6 0 0.83 16 0 0.23
7 1 0.77 17 0 0.21
8 1 0.63 18 0 0.14
9 0 0.56 19 0 0.08
10 0 0.55 20 0 0.03

5.2.3 Area Under The Curve (AUC)

It will be useful to condense the information of a ROC plot into a single scalar

value, a statistic. In this way, we could compare different classification models.

One common statistic used here is the area under the ROC curve (AUC). Since

the limits of both variables of the ROC plot are [0, 1] and AUC is a portion of an

unit square, AUC takes values from 0 to 1. The larger the AUC, the better average

performance of the classification model. AUC is the probability that the model will

give a randomly chosen positive instance a higher score than a randomly chosen

negative one [48].

Given a model, assume we already computed its ROC curve, we will have the

following:

• scores it generates for each instances {si}i=1,2,...,N (we sorted the instances to

make s1 ≥ s2 ≥ ... ≥ sN)
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Figure 5.1: ROC curve for the example in section (5.2.2). There 10 pos-
itive and 10 negative instances, each is assigned a score by
the classification model. From lower left to upper right, each
point represents the TPR and FPR values computed with
thresholds s1, s2, ..., s20.

• The TPR(si) and FPR(si) are computed at each threshold (chosen to be si)

• TPR(si) is plotted against FPR(si) to generate the ROC curve.

The AUC can be computed by integrating TPR(si) against FPR(si). We will use

the Trapezoidal rule here.

AUC =
N−1∑
i=1

1

2
[TPR(si) + TPR(si+1)] [FPR(si)− FPR(si+1)] (5.3)

Figure (5.2) shows an example of two binary classification models working on

the same set of instances. The AUC of model A is 0.83 comparing to 0.67 for model

B. This implies that model A has a better average performance than B.
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(a) Model A, AUC: 0.83 (b) Model B, AUC: 0.67

Figure 5.2: There are two binary classification models, model A and B.
They both work on the same instances. Model A(5.2a)yields
a AUC of 0.83, while model B(5.2b) yields 0.67. This example
indicates that model A has a better average performance than
B.

5.3 Simulation

We first investigate the performance of our models on simulated data, using

both the 2-body method and the 1-body mean field. Patients’ entry/diagnosis times

and the initial status (latent or susceptible) are simulated. The conditional proba-

bilities of being susceptible at the time of entry of one patient given the entry and

diagnosis times of every patient in the cluster are computed using our models. This

conditional probability will be used as a score to determine whether this patient is

infected after entering the country. Both the simulation and the computation will

use the same set of parameters for consistency. The procedures of the simulation

are listed as the following,

1. The size of foreign-born population is NF , among whom there are three types

of people, in terms of TB disease: Susceptible(S), Latent(L) and Active(A).

2. Foreign-born people enter their group through immigration. There is a cer-

tain immigration rate ri people/month. There are two possible states for the

immigrants when they enter: they have a probability 1 − π to be susceptible

and probability π to be latent.
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3. Suppose NF is the total number of foreign-born people in a given month and

Na
F active TB patients among them. The infectivity contributed by an active

TB foreign-born patient is Γ, indicating that, for a susceptible person, the

probability of being infected by the foreign-born population in a given month

is
Na
F

NF

Γ. We assume the probability of being infected by the domestic bath

is a constant, βd. Therefore, for a susceptible foreign-born individual, the

probability that he/she will be infected is 1− (1− N
a
F

NF

Γ)(1−βd) in that given

month.

4. Once an individual is infected, he/she has a probability δ of becoming active

immediately or 1−δ of acquiring latent infection. Patients with latent infection

have probability α to become active per month. After an active patient is

diagnosed, he/she will be removed from the population.

5. There is a life span for all the individuals: k. Anyone existing for a period

longer than k will be removed from the population. This corresponds to death

due to natural causes.

6. The simulation is run for time U in order to let the system reach a stationary

state. The first c patients who are diagnosed after U are recorded as one

cluster.

The algorithm for simulation is shown in Algorithm 1. The definitions of variables

used in the algorithm are shown in the following list.

• I: a person with entry time, diagnosis time and entry status. The diagnosis

time is set to -1, if the individual is not diagnosed yet.

• FS, FL, FA, FD: sets of foreign-born individuals who are susceptible, latent,

active and diagnosed.

A summary of input and output in Algorithm 1, are shown in the Table 5.3.

5.3.1 Data and Parameter Selection

We have data of foreign-born TB patients in New York city who were diagnosed

in the period of Nov 2000 - Dec 2007 [46]. The data is provided by Center of Disease
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Table 5.3: A summary of the input and out variables in the Algorithm 1.

Input Meaning
α Probability of becoming active given latent (per month)
Γ Infectivity contributed by a single active patient
βd Probability of being infected by domestic bath (per month)
δ Probability of becoming active immediately after infection
γ Probability of being diagnosed given active (per month)
c Size of the cluster
Output Meaning
FD A cluster of patients who are diagnosed

Control (CDC). For each patient in the data set, we have the entry and diagnosis

times. We also have the Spoligotypes and RFLP of the patient’s MTBC isolate.

Patients are clustered based on Spoligotypes and RFLP. (Patients in one cluster

share the identical Spoligotypes and RFLP.)

The original data have 5,258 patient records, including US-born patients who

do not have entry time. Among the data, 2 are missing the Spoligotype values, 3 of

them have diagnosis time prior to entry time and 1,512 of them omit the entry time

information. Excluding those patients with missing information leaves us 3,741

patient records. The earliest diagnosis time is 29-Nov-2000, the latest is 28-Dec-

2007. After clustering the patients according to their Spoligotype and RFLP, there

are 2,679 clusters, including clusters with size 1. The distribution of the sizes of the

clusters are shown in Figure 5.3. The clusters with size greater than 15 accounts

for only 0.55% of the total clusters and they are not shown. Here is some basic

Figure 5.3: The distribution of the cluster sizes (smaller or equal to 15)
of the NYC patient data.
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Algorithm 1 Function SimAll

1: Function SimAll simulates the foreign-born patient clusters
2: Input: α, Γ, βd, δ, γ, c
3: Output: FD

4: function SimAll(T, α, Γ, βd, δ, γ)
5: set FS, FL, FA to initial sizes
6: set FD to size 0
7: for currentMonth = 1:T do
8: add ri number of I to FS or FL
9: add I to FL with probability π, I.status = L

10: add I to FS with probability 1− π, I.status = S
11: for all I, I.entryTime = currentMonth, I.diagnosisTime = -1
12: for all I, if currentMonth − I.entryTime > k, remove I.

13: βf = 1−
(

1− size(FA)
size(FS+FA+FL)

Γ
)

(1− βd)

14: for each I in FS do
15: if rand()≤ βf AND rand()≤ δ then
16: move I from FS to FA
17: else if rand()≤ βf AND rand()> δ then
18: move I from FS to FL

19: for each I in FL do
20: if rand() ≤ α then
21: move I from FL to FA

22: for each I in FA do
23: if rand() ≤ γ then
24: move I from FA to FD
25: I.diagnosisTime = currentMonth

26: Return last c entries in FD

information about clusters: 1) 84.96% have size 1; 2) 98.25% have size less than 5;

3) 99.29 % have size less than 10; 4) The largest cluster size is 44.

According to a census report on New York City [50], the city’s population

was 8,244,910 in 2011, among those 37.2% are foreign-born. 323,082 foreign-born

people entered the city from 2000-2010. Simulation at this scale while at the same

time studying the transmission dynamics simultaneously at the individual level are

computationally expensive. Instead of simulating the real population, a model with
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smaller population size is simulated. Our goal for the simulation is to produce

approximately the same number of patients with a specific strain of TB with the

NYC data, which is around 2 in 7 years. We assume the following: 1) the initial

sizes of the susceptible, latent and active population for the foreign-born population

are set to be 1000, 20, 1; 2) every month, 3 foreign-born people enter; 3) the life

span is 600 months.

Once a patient develops active TB disease, he/she will develop symptoms

like nausea, vomiting and fever [6]. We assume the average time for an active TB

patients getting diagnosed is 3 months. Therefore, we have γ = 0.3333, which is the

probability that an active patient is diagnosed in a given month. Also according

to Centers for Disease Control and Prevention, “Overall, without treatment, about

5 to 10% of infected persons will develop TB disease at some time in their lives.

About half of those people who develop TB will do so within the first two years of

infection.” [5]. We assume the chance of becoming active immediately after infection

is 5%, i.e. δ = 0.05.

At this stage we are uncertain about α, the probability per month to become

active given the patient has latent infection; Γ, the infectivity per month contributed

by a patient with active TB inside the cluster; π, the probability that an immigrant

enters the country with latent infection of a specific strain of TB. Estimating these

parameters from the data is impractical, as discussed in Chapter 4. We would

like to choose parameters to sweep low-median-high possible values for these three

parameters and test the sensitivity of our models to those values.

Several research works have been done on TB modeling of the foreign-born

patients [51–55], in which the estimated values of α ranging from 2.63 × 10−5 to

8.16×10−5. These estimations make no assumptions of the life span of foreign-born

person. Since we assume a shorter life span for foreign-born persons (600 months),

we choose slightly greater values for α: 5 × 10−5, 1 × 10−4, 2 × 10−4. An active

TB patient, on average, will cause 7 infections in a year [39]. Translating this into

infectivity contributed by an active TB patient, we will have Γ = 0.583. Among all

the TB cases in foreign-born patients, the percentage of recent transmission ranges

from 14-24%, as indicated in [51, 53, 54]. In order to have the simulation generate
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a similar percentage of recent transmission, we choose values of Γ as 0.5, 1, 2. With

the goal of generating around 2 cases in 7 years, values of π are chosen to be the

following, π : 0.035, 0.07, 0.2. In summary, we have 3 × 3 × 3 = 27 experiments to

test (one for each set of parameters).

As discussed in Chapter 1, the TB incidence rate among foreign-born persons

is much higher than the domestic population in United States. At this stage, we

assume there is no infectivity from the domestic population, i.e. βd = 0. It is found

that the system becomes stationary after 1200 months for all the 27 experiments.

Therefore, we choose T = 1200 and the first 5 TB cases after 1200 months are

collected. The disease status at entry and entry/diagnosis times of these 5 patients

are recorded. The simulations are run 1000 times for each experiment. Among all

the TB cases, the percentage of diagnosed people entering the country susceptible

and the average active patients per month are shown in Table 5.4.

Model Evaluation: In order to evaluate the performance of our model, we pro-

pose the following näıve method, which serves as a control of our models. For a

susceptible foreign-born person, the näıve method assumes constant infectivity re-

gardless of the existence of other active patients in the cluster. Let Na
F be the

average active patients per month and NF be the average size of the foreign-born

population; both are averaged over all the 1000 simulations. The probability of

being infected is defined as following,

βv = 1− (1− Na
F

NF

Γ)(1− βd) (5.4)

Note that βv is a constant for the näıve method. For a patient who entered at t0 with

latent infection, the probability of he/she being diagnosed at t1 is simply computed

as

p(t1|S, t0) = h(t1 − t0, α, γ) (5.5)

where h(x, θ1, θ2) is defined as in equation (3.5), it computes the probability mass

function of the sum of two geometric random variables with success probability
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Table 5.4: 1000 simulations are run for each of the 27 parameter set-
tings. For each simulation, the first 5 cases after 1200 months
are collected as one cluster. The first three columns are the
values for the parameters. The 4th column, “% of S” , is
the percentage of diagnosed persons who entered the country
susceptible and were infected domestically. The last column,
“avg. act.”, is the number of average active TB patients per
month.

exp no. α βc π % of S avg. act.
1 5× 10−5 0.5 0.035 0.0638 0.0139
2 1× 10−4 0.5 0.035 0.0652 0.0229
3 2× 10−4 0.5 0.035 0.0864 0.0440
4 5× 10−5 1.0 0.035 0.1236 0.0148
5 1× 10−4 1.0 0.035 0.1178 0.0247
6 2× 10−4 1.0 0.035 0.1660 0.0482
7 5× 10−5 2.0 0.035 0.2242 0.0167
8 1× 10−4 2.0 0.035 0.2468 0.0291
9 2× 10−4 2.0 0.035 0.3466 0.0666
10 5× 10−5 0.5 0.070 0.0568 0.0229
11 1× 10−4 0.5 0.070 0.0580 0.0442
12 2× 10−4 0.5 0.070 0.0816 0.0874
13 5× 10−5 1.0 0.070 0.1050 0.0241
14 1× 10−4 1.0 0.070 0.1250 0.0478
15 2× 10−4 1.0 0.070 0.1724 0.0977
16 5× 10−5 2.0 0.070 0.1970 0.0273
17 1× 10−4 2.0 0.070 0.2410 0.0576
18 2× 10−4 2.0 0.070 0.3434 0.1280
19 5× 10−5 0.5 0.200 0.0416 0.0625
20 1× 10−4 0.5 0.200 0.0622 0.1243
21 2× 10−4 0.5 0.200 0.0802 0.2447
22 5× 10−5 1.0 0.200 0.0866 0.0654
23 1× 10−4 1.0 0.200 0.1128 0.1321
24 2× 10−4 1.0 0.200 0.1484 0.2716
25 5× 10−5 2.0 0.200 0.1726 0.0743
26 1× 10−4 2.0 0.200 0.2124 0.1527
27 2× 10−4 2.0 0.200 0.2938 0.3319
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θ1 and θ2. For patients who entered susceptible, the probability of he/she being

diagnosed at t1 is computed as follows,

p(t1|S, t0) =

t1∑
i=t0

(1− βv)i−t0βv[δ(1− γ)t1−iγ + (1− δ)h(t1 − i, α, γ)] (5.6)

p(S|t0, t1) =
p(t1|S, t0)π

p(t1|S, t0)π + p(t1|S, t0)(1− π)
(5.7)

The näıve method simply tries to mimic the 1-body mean field. The only difference

is that the infectivity remains constant regardless other patients in the cluster. Next

we will test our models from different aspects.

Different Order: Let us denote the patients as A,B,C,D,E according to the order

of the diagnosis times. An illustration of a cluster of size 5 is shown in Figure

5.4. Patient E is set as the target patient: the conditional probability of E being

Figure 5.4: An illustration of a patient cluster of size 5. The patients are
ordered according to the time of diagnosis and denoted as A,
B, C, D and E.

susceptible at the time of entry given the entry and diagnosis times of all 5 patients

is computed by both the 2-body and 1-body mean field. In the 2-body mean field

method, we compute with 2 patients and the infectivity contributed by the other

three will be added into the background. We also want to test the effect of the

proximity of the diagnosis times of the 2 patients (one of which is fixed as patient
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E) used in the 2-body mean field method. We choose the second patient for the 2-

body mean field method as D, C, B and A one by one, while treating the infectivity

from others as background. Therefore, there are 4 estimations of E having latent

infection at the time of entry, which are computed by the 2-body mean field method

using DE, CE, BE and AE. The illustrations for the case with DE and CE are

shown in Figure 5.5. For the 1-body mean field method and the näıve method,

patients A - D are put into the background. Together with these two results, we

have 6 total estimations for 27 experiments. The ROC curves are plotted and AUC

are computed. The results are shown in Table 5.5. Here are the findings based on

the results: 1) The values of the AUC of all the 2-body mean field method and

the 1-body mean field method are greater than 0.5. This indicates the model has

discriminating power; 2) The 1-body mean field method has the best average AUC

as 0.7236 and the 2-body mean field method using D and E has the second best

average AUC as 0.7209; 3) Näıve method has the worst average AUC as 0.5539, just

slightly better than random guess, which has a AUC of 0.5;

In order to test the difference among the 2-body mean field method (differ-

ent ordering), approximation and näıve method, we perform paired t-test on the

experiment results. We followed a standard paired t-test [56]:

• Let R1, R2 be N × 1 vectors representing the N results generated by Model 1

and and Model 2 respectively.

• The null hypothesis, H0: Model 2 dose not generate better results than Model

1.

• t-statistics: t =
µX
σX

, where X = R2 − R1, µX is the sample mean of X and

σX is the standard deviation.

• H0 is rejected if t > t̃1−c,v. t̃1−c,v is the critical value with degree of freedom

v. Here v = 26 and c is chosen to be 0.05: t̃0.95,26 = 1.7056.

Here we have 27 experiments results (AUC) for 2-body mean field method

with 4 different patient orderings, 1-body mean field method and the näıve method,

a total of 6 different models. The t-statistics of all the pair of models are shown in
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Table 5.5: The results of the AUC of the ROC curves computed on 27
experiments with different methods. The first 4 columns are
the results of the 2-body mean field method. The two charac-
ter indicates which two patients are used in the computation.
The 5th columns shows the results of the 1-body mean field
method and the last columns shows the results for the näıve
method. The mean and standard deviation (STD) of the AUC
across all 27 experiments are shown in the last two rows.

Exp No. DE CE BE AE 1-Body Näıve
1 0.8471 0.8434 0.8337 0.8471 0.8475 0.5386
2 0.7708 0.7804 0.7891 0.7797 0.7771 0.6070
3 0.6696 0.6633 0.6565 0.6426 0.6665 0.6262
4 0.7999 0.8043 0.7931 0.7934 0.8048 0.5110
5 0.7475 0.7524 0.7353 0.7243 0.7455 0.5392
6 0.7436 0.7197 0.7272 0.7417 0.7509 0.5740
7 0.8151 0.7997 0.8032 0.8123 0.8204 0.5139
8 0.7526 0.7352 0.7375 0.7539 0.7658 0.5239
9 0.7276 0.7120 0.7121 0.7187 0.7367 0.5827
10 0.7337 0.7222 0.7154 0.7294 0.7316 0.5052
11 0.7119 0.7170 0.6928 0.6921 0.7096 0.5734
12 0.6828 0.6780 0.6796 0.6841 0.6792 0.5742
13 0.7928 0.7830 0.7813 0.7920 0.7951 0.4844
14 0.7659 0.7558 0.7626 0.7529 0.7688 0.5788
15 0.6933 0.6807 0.6786 0.6848 0.6980 0.5966
16 0.7495 0.7489 0.7468 0.7579 0.7621 0.5453
17 0.7429 0.7325 0.7377 0.7420 0.7480 0.5249
18 0.6472 0.6453 0.6419 0.6373 0.6532 0.5867
19 0.7596 0.7552 0.7632 0.7646 0.7608 0.5065
20 0.7166 0.7174 0.7093 0.7102 0.7132 0.5311
21 0.5943 0.5988 0.5971 0.5960 0.5965 0.6552
22 0.6942 0.7031 0.7002 0.6939 0.6960 0.5007
23 0.7065 0.7101 0.7151 0.7115 0.7139 0.5568
24 0.5751 0.5760 0.5792 0.5792 0.5783 0.5870
25 0.7264 0.7157 0.7216 0.7254 0.7247 0.5347
26 0.6936 0.6889 0.6876 0.6871 0.6914 0.5543
27 0.6028 0.6000 0.5967 0.5927 0.6013 0.5427
Mean 0.7209 0.7163 0.7146 0.7165 0.7236 0.5539
STD 0.0648 0.0633 0.0633 0.0664 0.0660 0.0411
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Table 5.6. For example, the entry with row label “BE” and columns label “Näıve”

is the t-statistics computed based on XBE−XNäıve, where XBE is the AUC values of

the 2-body mean field method using patient B and E and XNäıve is the AUC values

of the Näıve method. Here t = 1.7472 is greater than the critical value: 1.7056.

Therefore, the null hypothesis, “the performance of 2-body mean field method with

B, E is not better than the näıve method”, is rejected.

Table 5.6: T-statistics of the paired t-test for pairs of experiments. “Ap-

prox” means the 1-body mean field method.

DE CE BE AE 1-Body Näıve

DE 0 0.5364 0.6884 0.4829 -0.5761 1.7815

CE -0.5364 0 0.2113 -0.0238 -0.6786 1.7620

BE -0.6884 -0.2113 0 -0.2332 -0.9224 1.7472

AE -0.4829 0.0238 0.2332 0 -0.8863 1.7018

1-Body 0.5761 0.6786 0.9224 0.8863 0 1.7956

Näıve -1.7815 -1.7620 -1.7472 -1.7018 -1.7956 0

Based on the results, the 2-body mean field method with patients DE, CE,

BE and 1-body mean field method have significantly better performance than näıve

method. The 1-body mean field methods are slightly better than the 2-body mean

field method with all 4 patient orderings, but these differences are not statistically

significant. One should note that the 1-body mean field method is much more

computationally efficient than the 2-body mean field method. One run of the 2-

body mean field method with 1000 clusters of size 5 take an approximately 20 hours,

while for the 1-body mean field method it takes less than 1 minute (Computer: Mac

OSX, 2.26 GHz Intel Core 2 Duo). Therefore, the 1-body mean field method is

preferred in our model and the following experiments will be computed only using

this method.
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(a) DE

(b) CE

Figure 5.5: The figures show 2 the patient orderings for the 2-body mean
field method. Figure (a) shows an illustration of computing
with patient D and E (with E as the target) and A, B and
C are in the background. Figure (b) shows computing with
C and E (with E as the target) and A, B and D are in the
background.
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Different Cluster Sizes: We also test the effect of the cluster size. Again, we

use the patient E as our target patient. We compute the conditional probability of

E being susceptible at entry with only D and E in the cluster. Then we increase

the size of the clusters by adding C, B and A one by one. i.e. “CDE” represents

the setting where C,D and E are in the cluster. We use the 1-body mean field

method with “DE”, “CDE”, “BCDE” and “ABCDE”. The conditional probability

is recomputed each time. The resulting AUC are shown in Table 5.7. The cluster of

size 5 (last column, “ABCDE”) on average has the best performance. This indicates

that the model is more accurate with more information about the cluster. A paired

t-test is perform for these four models and the results are shown in Table 5.8. The

format of Table 5.8 is the same as the previous section. Based on these results,

adding in more patients into the clusters always generate better AUC. However,

the improvements of adding more patients are not statistically significant (all the

t-statistics are smaller than t̃0.95,26 = 1.7056).

Table 5.8: T-statistics of the paired t-test for pairs of experiments.

DE CDE BCDE ABCDE

DE 0 -0.8317 -1.1166 -0.8426

CDE 0.8317 0 -0.7728 -0.5597

BCDE 1.1166 0.7728 0 -0.0622

ABCDE 0.8426 0.5597 0.0622 0
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Table 5.7: The results of the AUC of the ROC curves computed on 27
experiments with different cluster sizes using the 1-body mean
field method. E is our target patient. The characters repre-
sents the patient who are added in the cluster. e.g. “CDE”
represents the setting where C,D and E are in the cluster.
The mean and standard deviation (STD) of the AUC across
27 experiments are shown the last two rows.

Exp No. DE CDE BCDE ABCDE
1 0.8219 0.8301 0.8454 0.8475
2 0.7917 0.7852 0.7898 0.7771
3 0.6409 0.6534 0.6617 0.6665
4 0.8096 0.8084 0.8051 0.8048
5 0.7308 0.7382 0.7416 0.7455
6 0.7473 0.7473 0.7498 0.7509
7 0.8083 0.8133 0.8174 0.8204
8 0.7495 0.7554 0.7624 0.7658
9 0.7302 0.7356 0.7374 0.7367
10 0.7217 0.7294 0.7294 0.7316
11 0.7142 0.7079 0.7150 0.7096
12 0.6731 0.6776 0.6814 0.6792
13 0.7914 0.7951 0.7969 0.7951
14 0.7540 0.7617 0.7670 0.7688
15 0.6826 0.6886 0.6931 0.6980
16 0.7476 0.7566 0.7597 0.7621
17 0.7375 0.7421 0.7489 0.7480
18 0.6423 0.6469 0.6497 0.6532
19 0.7532 0.7687 0.7632 0.7608
20 0.7114 0.7151 0.7179 0.7132
21 0.5964 0.5951 0.5960 0.5965
22 0.6903 0.6900 0.6925 0.6960
23 0.7074 0.7100 0.7099 0.7139
24 0.5796 0.5775 0.5778 0.5783
25 0.7190 0.7271 0.7280 0.7247
26 0.6916 0.6951 0.6939 0.6914
27 0.5912 0.5965 0.5995 0.6013
Mean 0.7161 0.7203 0.7233 0.7236
STD 0.0652 0.0658 0.0666 0.0660
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Extra Patients after Diagnosis: After testing the effects of patient ordering

and cluster size, we are also interested in the effect of adding in patients who are

diagnosed after the target patient. Instead of patient E, we choose patient C as

our target. The conditional probability of C being susceptible at entry is computed

using the 1-body mean field method under two different settings: 1) patient A, B

in the cluster. This case is denoted as “ABC”; 2) in addition to A and B, adding in

patient D and E. This case is denoted as “ABDEC”. The AUC of the ROC curves are

shown in Table 5.9. 25/27 experiments generate better performance, as measured

by AUC, after incorporating the information of the patients who are diagnosed after

the target patient. A paired t-test is performed with the null hypothesis that 1-body

mean field method with “ABDEC” dose not have better performance than “ABC”.

The t-statistics is 1.2725. Although adding extra patients after the diagnosis time

of the target patient improves the performance of the model, the improvement is

not statistically significant.
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Table 5.9: The AUC results of all the experiments of two configurations.
One is setting target patient as C with A and B in the cluster
(ABC). The other also uses C as target and adds A, B, D and
in the cluster. Note that D and E are patients who are diag-
nosed after C’s diagnosis time. (“STD” represents standard
deviation)

Exp No. ABC ABDEC Exp No. ABC ABDEC
1 0.8067 0.9194 15 0.6759 0.6619
2 0.7530 0.8368 16 0.7477 0.8454
3 0.7049 0.7642 17 0.7188 0.7588
4 0.8182 0.8946 18 0.6418 0.6670
5 0.7745 0.8244 19 0.7538 0.8485
6 0.6963 0.7441 20 0.6923 0.7121
7 0.7777 0.8697 21 0.6565 0.6666
8 0.7637 0.7941 22 0.7522 0.8233
9 0.7097 0.7338 23 0.6854 0.6995
10 0.7176 0.8756 24 0.6191 0.6388
11 0.7249 0.7581 25 0.6921 0.7634
12 0.7208 0.7065 26 0.6495 0.6922
13 0.7572 0.8526 27 0.6141 0.6170
14 0.6859 0.7565

Mean 0.7152 0.7676
STD 0.0501 0.0839
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Sensitivity on Parameters: As discussed in Chapter 4, estimating the parame-

ters from the data is impractical. In this section, we test the sensitivity of the model

performance to the parameters. We would like to choose 3 parameter settings, under

which our model performs the best, average and worst. They are setting 1(best),

9(average) and 24(worst). Similarly, we set E as target patient, while A, B, C and

D are in the cluster. For each of data sets 1, 9 and 24, the model is run with all

parameter settings. For example, for data set simulated with parameter setting 9,

model is run with settings 1-27. Note that here we would like to test the perfor-

mance of our model while the parameters used are not accurate. We use the 1-body

mean field method and the AUC for the experiments are computed.

Let Ui,j be the value of AUC of the data simulated with the parameter setting i,

and computed with setting j. For example, we use parameter setting 9 to simulate

data. Then this data is computed with the 1-body mean field method using the

same parameter setting. The AUC generated by this experiment is denoted as U9,9.

In addition to compute with parameter setting 9, the other 26 parameter settings

are also used in the 1-body mean field method. These experiments will generate

U9,i with i = 1, 2, ..., 27; i 6= 9. In other words, Ui,i is the AUC computed with

the “true parameters” and Ui,j;j=1,2,...,27;j 6=i are the AUC computed with the “wrong

parameters”. Let µAUCi be the average value and σAUCi be the standard deviation

of {Ui,j}j=1,2,...,27. The results are presented in the following:

• U1,1 = 0.8475, µAUC1 = 0.8437, σAUC1 = 0.0038

• U9,9 = 0.7367, µAUC9 = 0.7324, σAUC9 = 0.0036

• U24,24 = 0.5783, µAUC24 = 0.5761, σAUC24 = 0.0016

A boxplot of {Ui,j}j=1,2,...,27;i 6=j for i = 1, 9 and 24 are shown in Figure 5.6 (Ui,i is

plotted as black circle). As shown in the figure, the values of AUC are insensitive

to the parameters.

Recall that the initial status of the 1000 patient E is either latent or susceptible.

The conditional probability of E being susceptible, vs, is computed by our model

and is used as the score to determine whether E is considered to be susceptible at

entry or not. We set a threshold s with initial value 1 and gradually reduce it to 0.
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Figure 5.6: The boxplot of {Ui,j}j=1,2,...,27 for i = 1, 9 and 24. Ui,j is the
value of AUC of the model results using data set simulated
with parameter setting i, but computed with setting j. The
AUC using the true parameters, i.e. U i

i , i = 1, 9, 24 are plotted
in black circles. In all experiments, we use the 1-body mean
field method while setting E as target patient and using all 5
patients in the cluster.

Each step, the patients with vs ≥ s are classified as being susceptible at entry. The

threshold s starts at 1 and gradually decreases; we stop once we have more than 50%

True Positive Rate (TPR), i.e. patients who entered susceptible and are classified as

susceptible based on their vs. The values of False Positive Rate (FPR) are recorded.

Let TPRi,j (FPRi,j) be the True Positive Rate (False Positive Rate) of the results

which used data set simulated with parameter setting i and is computed with setting

j. The scatter plot of the TPRi,j versus FPRi,j for i = 1, 9, 24 and j = 1, 2, ..., 27

are shown in Figure 5.7. The sub-figure on the left hand sides shows the result

computed using the simulated data with parameter setting 1, with which our model

has the best performance. It is shown that at the threshold values where our model

has a 50% true positive rate, the false positive rate is approximately 11% false

positive rate. In other words, when our model successfully identify 50% of the true
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Figure 5.7: The scatter plot of TPRi,j (first one greater than 50%) versus
FPRi,j for i = 1, 9, 24. The crosses represent the values plotted
with TPRi,i versus FPRi,i.

positive cases (the target patient entered susceptible and is identified as so), it only

includes 11% of the false positive cases (the target patient entered susceptible and is

identified as latent). The middle figure shows the results computed using parameter

setting 9, under which our model has an average AUC. At the threshold value

where our model has 50% true positive rate, the false positive rate is approximately

20%. The right most figure displays the results computed using simulated data with

parameter setting 24, under which our model has the worst performance. Here at

the threshold value where our model has 50% true positive rate, the false positive

rate is about 40%; it is still better than random guess. Within each sub-figure,

it is shown that the values TPRi,j and FPRi,j using different parameter settings

are clustered closely with each other. This indicates that our model is consistent

regardless of which parameter setting it used. Once again, we have shown that our

model is insensitive to parameters.

The consistency is a result of the characteristics of our model. Before dis-

cussing this, a few notations need to be introduced. For each cluster, the conditional

probability of patient E being susceptible given the entry and diagnosis times of all

the 5 patients is computed. Let y
(k)
i,j be the value of this conditional probability

of the kth cluster in the data set which is simulated with parameter settings i and

computed with the 1-body mean field method using setting j. As shown in Figure

5.6, although using the wrong parameters, the AUC are consistent with the one

computed with the true parameters. This is because the shape of ROC curves only

depends on the ranking of the clusters based on the order of y
(k)
i,j . For example, for
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Figure 5.8: Top: Data set simulated with setting 1, computed with set-
ting 7; Middle: Data set simulated with setting 9, computed
with setting 1; Bottom: Data set simulated with setting 24,
computed with setting 8. For the conditional probabilities in
each plot, while the values are different with different param-
eters in the computation, the relative positions remain ap-
proximately the same. For example, when we investigate the
3rd and 4th values in the bottom plot, we have y

(3)
24,24 ≥ y

(4)
24,24

and y
(3)
24,8 ≥ y

(4)
24,8.

any pair of m,n in 1-1000, if y
(m)
i,p ≤ y

(n)
i,p implies y

(m)
i,q ≤ y

(n)
i,q , the shape of the ROC

curve of the model using parameter setting p will be exactly the same as the one

using setting q. A sample of 45 values y
(k)
i,j for three different setting of i and j are

plotted in Figure 5.8. In our case, for data set simulated using setting i, the ranking

of the clusters are approximately the same regardless which parameter settings are

used in the computation. Therefore the ROC curves and the corresponding AUC of

our model are consistent even when we used different parameter settings.
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Domestic Bath: So far we have been using our model without the domestic bath.

We are going to test our model with the domestic bath. The probability of the target

patient being infected by the domestic bath is βd. Similarly, the new experiments

will have 5 patients in the cluster with E as the target. We choose experiments with

parameter settings: 1, 9 and 24, with the same reason as previous sections.

The patient clusters are simulated with the same procedure as in Algorithm

1. The simulated data contain the entry and diagnosis times of TB patients; there

is a percentage of patient who were susceptible at the time of entry (these patients

were infected after entry). This percentage is denoted as ps. ps will increase as βd

increases, since it is more likely for a susceptible person to be infected. We choose

the two different values of βd: one will increase ps by approximately 10% the other

will increase ps by approximately 20%, compared to the simulated data without

domestic bath (βd = 0). The purpose of doing this is to evaluate the performance of

the model with influence of the domestic background with two different intensities.

The values of βd chosen for each experiment and the corresponding ps and AUC are

shown in Table 5.10.

Table 5.10: Experiments with parameter settings 1,9 and 24 are simu-

lated again with two different values of background infectiv-

ity, βd. The values of βd are chosen to increase the original

percentage of susceptible patients, ps, by approximately 10%

and 20%. The format of table entries is: “AUC, (βd, ps)”.

Exp No. βd = 0 increase βd increase βd again

1 0.8475, (0, 6.38%) 0.8005, (3e−7, 7.10%,) 0.7560 , (5e−7, 8.12%)

9 0.7367, (0, 34.66%) 0.7233, (4e−6, 37.74%) 0.6797, (8e−6 , 40.96%)

24 0.5783 (0, 14.84%) 0.6113, (4e−6, 16.58%) 0.6122, (1.80e−5, 18.24%)

In the cases where our model has good performances, i.e. experiments 1 and

9, the presence of the domestic bath infectivity makes the performances decay. For

experiment 1, our model has AUC of 0.8475 when βd = 0 and ps = 6.38%; it

drops to 0.7560 when βd = 5 × 10−7 and ps = 8.12%. On the other hand, in

experiment 24, where our model performs even worse than the näıve method, adding
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in the domestic bath improves our model. Our model has AUC of 0.5783 with

ps = 14.84% to 0.6122 with ps = 18.24%. For each parameter settings, we compute

the conditional probability of the target patient in each cluster being susceptible

at entry at different βd. We plot the distribution of the conditional probabilities of

the target patients who actually entered susceptible, compare it to the distribution

of the conditional probabilities of those who actually entered with latent infection.

The plots are presented in Figure 5.9. For results with parameter settings 1 and 9,

adding the domestic bath infectivity has negative impact on the model performance

and the two distributions become less “distinguishable” as βd increase. On the other

hand, the two distributions for the experiments with parameter setting 24 are close

to each other even without domestic bath infectivity. That is why the AUC for

this case is merely 0.5783, indicating it is difficult to distinguish latent person and

the susceptible ones based on the conditional probabilities our model computed.

Increasing βd changes the data and makes the two distribution more distinct and

thus easier to distinguish latent and susceptible persons (better AUC).
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Figure 5.9: The conditional probabilities of the target patients being sus-
ceptible at entry were computed. Each sub-figure presents a
plot of two distributions of the values of these computed con-
ditional probabilities: 1) red cross represents the distribution
of the conditional probabilities of those who were actually
susceptible at entry; 2) blue circle represents the distribu-
tion of the conditional probabilities of those who were actu-
ally latent at entry. From top to bottom, row 1 displays the
results with parameter setting 1, row 2 displays the results
with parameter setting 9 and row 3 displays the results with
parameter setting 24.
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Hidden Active Foreign Bath: We also tested the effect of the hidden active

foreign bath. Assume we have a cluster of size n and the latest diagnosis time is

tn. The hidden active foreign bath represents the foreign-born patients who have

not been diagnosed by tn. We test this by adding in an special foreign-born patient

into the background, whose infectivity at tn equals to the infectivity contributed

by an average number of active patients in the population. This infectivity takes a

geometric decay with rate γ stepping backward away from tn. It is shown that the

effect of the hidden active foreign bath is negligible for our model’s performance.

5.4 Application to the New York City Data

Finally, our model is applied to the real data from New York City. Based

on our analysis, our model has discriminating power and is insensitive to parame-

ters. We propose to use our model in the following way: 1) Use one set of reasonable

parameters to compute; 2) Rank the cluster according to their target patient’s prob-

abilities being susceptible at entry; 3) Choose the top quantile of clusters, where

recent TB transmissions are most likely to happen and investigate those clusters in

detail. Instead of determining whether a patient was susceptible or not at entry for

all the patient clusters, the model raises a flag at the most suspicious ones so that

the healthcare officials could allocate the limited resources to investigate these ones.

Inferring parameter values from the data is impractical, as discussed in Chap-

ter 4. We set a high, median, low for parameters α, Γ and π. For applying our

model to the real data, we choose the median values for these three parameters.

This choice is somewhat arbitrary but we can do this because our model is shown

to be insensitive to α, γ and π. We showed this by experimenting our model with

different combinations of the three values (low-median-high) for these variables. For

the NYC data, we choose the values to b: α = 1× 10−4, Γ = 1, π = 0.07. For γ and

δ, βd, we also choose the values used in the experiments: γ = 0.3333, δ = 0.05 and

βd = 0. The total foreign-born population in NYC, NF , is set to be 3,000,000. Since

the probability to be infected in a particular month is going to be diluted by the

total foreign-born population, the computed conditional probability of the target

patient being susceptible at entry will be very small (around 1× 10−4). We can still
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Figure 5.10: For the 239 clusters with size 2 among the NYC data, the
scores of the target patients being susceptible at entry are
computed by the 1-body mean field method and plotted in a
descending order. For the clusters in which the two patients’
diagnosis times are more than 2 years apart, we plot a red
cross.

rank the patients according to these probabilities, but they are inconvenient to read.

Since we are more interested in finding the clusters in which the target patients have

relatively high conditional probabilities of being susceptible at entry, we normalize

these conditional probabilities by its maximum value. This means that the cluster

with highest conditional probability will have a score of 1 and all the scores are

positive. The patient who was diagnosed last in the cluster is set as the target. We

use the 1-body mean field method to compute the conditional probability of the

target patient being susceptible at entry and then normalize it to produce a score.

For the clusters with target patients having high scores, transmissions are likely to

have happened. Therefore, these clusters are said to be “suspicious”.

Among all the clusters in the NYC data set, we first choose the clusters with

size 2 and there are 239 such clusters. The 239 scores of the target patients are

sorted from high to low and shown in Figure 5.10. Note that the current method

used by the healthcare workers to identify transmission is to see if the diagnosis

times of two patients, given they share the common TB genotypes, are within 2

years [57]. For the clusters in which the two patients’ diagnosis times are more than

2 years apart, we plot a red cross. As shown in Figure 5.10, the current method
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[57] of identifying transmission provides a coarse result: nearly half of clusters are

classified as containing transmissions. On the other hand, our model provides a

much more refined result: allowing us to pick an arbitrary fraction of the clusters,

in which transmissions are most likely. The entry and diagnosis times of the 20 most

suspicious (highest conditional probability) clusters with the computed scores are

show in Table 5.11. Each cluster is classified by its Spoligotype ID, which is a ID

assigned to each Spoligotype, and RFLP. A patient may have contact with another

patient within the cluster. This contact is referred as an epidemiological link (epi

link). NYC Bureau of TB control has perform contact investigation on the clusters

with the last case reported in 2007 and some of these clusters are shown to have epi

links [58]. It turns out the target patients in the clusters with epi links have higher

scores in our model. Based on the report from NYC Bureau of TB control [58], there

is one cluster with size 2 which has epi links and it is in our data set: the cluster has

Spoligotype ID: “S01800”, RFLP: “IA”, (referred as “S01800 IA”). The conditional

probability of the target patient in this cluster being susceptible ranks the 4th among

the 239. There is another cluster,“S00210, GD318”, in which both patients lived in

the same neighborhood and from the same country; the investigation of the epi link

were in progress as reported in 2008. This cluster also has a high ranking: 12/239.

Based on the same procedure, the clusters of size 3 (74 such clusters) are chosen.

The patients who were diagnosed last are set as the target patient. The scores

are plotted in a descending order in Figure 5.11. For each cluster, let I(a) be the

patient whose diagnosis time is the closest to the target patient’s. For the clusters

in which I(a)’s and the target patient’s diagnosis times are more than 2 years apart,

a red cross is plotted. The information of the top 15 suspicious clusters are shown

in Table 5.12. Two clusters in our data set are reported to have epi links in the

report [58]: “S00540 BM45” and “S00034 W966”. The target patients in these two

clusters again have high scores in our model: 8th and 11th in 74 clusters.

5.5 Conclusion

In this section, we tested our model with the simulated data. The performance

of our model is evaluated with an ROC curve. It is shown that our model has
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Table 5.11: The information of 20 (out of 239) most suspicious clusters
of size 2. The third columns shows the entry/diagnosis time
(unit: month) of the patients within the cluster with the for-

mat: [t
(1)
0 , t

(1)
1 ; t

(2)
0 , t

(2)
1 ]. The scores of clusters are shown in the

last column. Cluster “S01800 IA” has epi links. Patients in
cluster “S00210 GD318” have close proximity; investigation
was in progress.

SpoID RFLP Entry/Diagnosis Times Score
S00282 HJ7 [1,2;1,2] 1.0000
S00437 AI212 [1,244;61,244] 0.7073
S01400 BW221 [1,24;14,24] 0.7032
S01800 IA [1,307;293,307] 0.6971
S00476 CS54 [1,51;18,51] 0.6968
S01223 BA57 [1,103;86,103] 0.6962
S00034 DN [52,291;1,292] 0.4792
S00050 BJ99 [1,256;46,257] 0.4753
S01095 BA90 [1,203;1,204] 0.4750
S00182 AX32 [1,157;8,158] 0.4724
S00034 DN5 [1,249;114,250] 0.4718
S00210 GD318 [1,209;82,210] 0.4714
S00671 NY [10,123;1,124] 0.4712
S00009 C49 [13,102;1,103] 0.4702
S00682 GZ [1,121;57,122] 0.4685
S00034 W338 [14,34;1,35] 0.4670
S00197 MX [1,401;378,402] 0.4666
S00196 HH10 [594,687;1,689] 0.3348
S00074 CS77 [156,348;1,350] 0.3237
S00197 HR102 [245,337;1,339] 0.3233

discriminating power in identifying transmission versus latent reactivation. The

model is shown to be insensitive to parameters by experimenting with different

combinations of parameter values.

Finally, we applied our model to the New York City data [46]. For each target

patient in the clusters, the conditional probability being susceptible at entry, which

means there is a TB transmission, was computed by our model. The target patients

in the clusters which contain epi links were assigned high scores by our model.

Contact investigations need to be perform in order to detect epi link and better

control TB spreading. Due to limited staff and resources, contact investigations can

only be done for a fraction of the TB clusters [58]. Healthcare officials can use our
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Figure 5.11: For the 164 clusters with size 3 among the NYC data, the
scores of the clusters are computed by the 1-body mean
field method and plotted in a descending order. Let I(a) be
the patient whose diagnosis time is the closest to the target
patient’s. For the clusters in which I(a)’s and the target
patient’s diagnosis times are more than 2 years apart, a red
cross is plotted.

model to prioritize the cluster to investigate.



125

Table 5.12: The information of 15 (out of 74) most suspicious clusters
of size 3. The third column shows the entry/diagnosis time
(unit: month) of the patients within the cluster with the for-

mat: [t
(1)
0 , t

(1)
1 ; t

(2)
0 , t

(2)
1 ; t

(3)
0 , t

(3)
1 ]. The scores of the clusters being

susceptible at entry are shown in the last column. Clusters
“S00540 BM45” and “S00034 W966” are shown to have epi
links.

SpoID RFLP Entry/Diagnosis Times Score
S00363 AI199 [88,120;1,122;51,122] 1.0000
S00002 LE11 [1,37;2,40;36,40] 0.9647
S00210 GD46 [1,95;52,95;76,96] 0.9197
S01141 BW321 [439,619;1,625;556,625] 0.7565
S00009 C4 [1,332;75,387;210,387] 0.7041
S00005 AX34 [1,153;136,153;132,155] 0.6179
S01776 AH5 [185,255;1,260;63,261] 0.5358
S00540 BM45 [134,173;1,178;57,179] 0.5317
S00200 W269 [162,246;1,254;189,255] 0.4866
S00034 W912 [1,183;77,215;198,216] 0.4603
S00034 W966 [1,513;475,514;356,517] 0.3541
S00026 MC10 [68,89;1,95;46,97] 0.3431
S00086 HP19 [1,618;638,638;624,639] 0.2545
S00074 CS13 [1,336;153,353;58,356] 0.2210
S00245 DK22 [106,124;10,154;1,157] 0.2176



CHAPTER 6

Conclusion and future work

This thesis studies TB from two aspects. The first part of the thesis investigates the

evolution of the genome of the MTBC utilizing the information of the DNA finger

printing data. The second part studies mathematical models for TB disease spread

under the framework of small patient clusters.

6.1 MIRU Evolution

Conclusion: In this part, we utilize the database of DNA finger printing of the

MTBC isolates to study the evolution of mycobacterial interspersed repetitive units

(MIRU) in the MTBC genome. Based on spacer oligonucleotide types (spoligo-

types), two rules are designed to infer the mutations and their direction of the

isolates. A joint data set of 14,453 isolates gathered from United States Centers for

Disease Control [28] and Institute Pasteur SITVIT [29] is examined to determine

41,604 of mutations.

We also investigated the dynamics of the mutations of the MIRU repeat num-

bers. We have found that different repeat numbers mutate differently. Small values

(0-3) have high probability to increase while large numbers tend to decrease. It is

found that it is more likely for a repeat number to change by smaller values than

large ones. We also study the MIRU evolution by locus. We found that the mutation

dynamics are different for different loci. Sticky values are defined as the number

most of the repeat numbers tend to mutate to. This sticky value is different for

different loci. A Markov chain model is built to investigate the future of the repeat

number distribution, such as the stationary distribution and the convergence rate.

Under the framework of Markov Chains, MIRU 24 is found to be the most stable

locus, while MIRU 27 is the least stable one.

Future Work: This part of the study points out an interesting future research

direction. In order to infer the mutation directions among isolates, we defined two
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rules. These two rules take advantage of one of spoligotpes’ characteristics: that it is

easy for the DR region of the MTBC genome to lose a spacer, yet nearly impossible

to gain one. These rules can be used to find the root of the MTBC isolates. Using

the same Markov chain framework, we can estimate the length of time it takes for

the MIRU repeat numbers to evolve from the root to the current distribution. It

can also divide the isolate data into different lineages, therefore the age of different

lineages can be investigated in terms of the Markov chain framework.

6.2 TB Spread

Conclusion: In the second part of this thesis, we develop mathematical models to

understand the transmission dynamics of TB. With the help of DNA finger printing

technologies, we clustered TB patients into small groups, with size 1 - 10. The

patients in the same cluster share a genetically common TB strain. They have pos-

sibility to be infected by someone in the cluster. We built mathematical models to

estimate the probability of whether an immigrant TB patient enter the country with

latent infection, given the information of other immigrants in the cluster. Unlike

most of the mathematical models for TB epidemiology, which study the transmis-

sion dynamics at the population level [27], we built a model which studies the spread

at an individual level. We first built a detailed model to help us get insight into

the problem. Then, we use a mean-field style approximation to simplify the compu-

tations. Based on the simulation data, our model is proven to have discriminating

power. Although it is impractical to estimate the parameters from the data, it is

found that our model is insensitive to parameters. The model can be used to raise

alarms to the most suspicious clusters, where a recent TB transmission will most

likely occur.

Future Work: The study in this part allows us to investigate the dynamics of

TB transmission in small groups. We tried to model the exact transmission routes

in as much detail as possible. While doing this give us insight into the true dynam-

ics, it leads us to complicated models, introducing difficulties in computation and

parameter estimation.
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One promising direction is to simplify the model. (Please refer to the idea of

Occam’s razor [59]) With the experience of building detailed models of TB spread,

we now understand the dynamics in a more detailed sense. Therefore, we can sim-

plify the model without violating fundamental rules of the transmission dynamics.

We use a bottom-up approach to build a probabilistic model to estimate the like-

lihood of transmissions. What we learned from our model is that the likelihood of

transmissions within a cluster is related to the closeness of the diagnosis time of

the patients in the cluster. One could use a top-down approach, starting from real

data to find relationships between the structure of the entry/diagnosis times and

epi links within a cluster.
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